The Impact of 1030 nm fs-Pulsed Laser on Enhanced Rayleigh Scattering in Optical Fibers
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, C.; Bai, Q.; Yan, M.; Wang, Y.; Zhang, H.; Jin, B. A comprehensive study of optical frequency domain reflectometry. IEEE Access 2021, 9, 41647–41668. [Google Scholar] [CrossRef]
- Palmieri, L.; Schenato, L.; Santagiustina, M.; Galtarossa, A. Rayleigh-based distributed optical fiber sensing. Sensors 2022, 22, 6811. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Xu, Y.; Huang, S.; Sun, M.; Wang, C.; Shang, Y. Recent advancements in optical frequency-domain reflectometry: A review. IEEE Sens. J. 2022, 23, 1707–1723. [Google Scholar] [CrossRef]
- Soller, B.J.; Gifford, D.K.; Wolfe, M.S.; Froggatt, M.E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 2005, 13, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Tosi, D.; Molardi, C.; Sypabekova, M.; Blanc, W. Enhanced Backscattering Optical Fiber Distributed Sensors: Tutorial and Review. IEEE Sens. J. 2021, 21, 12667–12678. [Google Scholar] [CrossRef]
- Lee, T.; Beresna, M.; Masoudi, A.; Brambilla, G. Enhanced-Backscattering and Enhanced-Backreflection Fibers for Distributed Optical Fiber Sensors. J. Light. Technol. 2023, 41, 4051–4064. [Google Scholar] [CrossRef]
- Wang, M.; Zaghloul, M.A.S.B.; Huang, S.; Yan, A.; Li, S.; Zou, R.; Ohodnicki, P.; Buric, M.; Li, M.-J.; Carpenter, D.; et al. Ultrafast laser enhanced Rayleigh backscattering on silica fiber for distributed sensing under harsh environment. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Loranger, S.; Gagné, M.; Lambin-Iezzi, V.; Kashyap, R. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre. Sci. Rep. 2015, 5, 11177. [Google Scholar] [CrossRef] [PubMed]
- Parent, F.; Gérard, M.; Monet, F.; Loranger, S.; Soulez, G.; Kashyap, R.; Kadoury, S. Intra-arterial image guidance with optical frequency domain reflectometry shape sensing. IEEE Trans. Med. Imaging 2019, 38, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Fu, C.; Li, P.; Meng, Y.; Zhong, H.; Du, B.; Guo, K.; Chen, L.; Wang, Y.; He, J. High-spatial-resolution strain sensor based on Rayleigh-scattering-enhanced SMF using direct UV exposure. J. Light. Technol. 2023, 41, 1566–1570. [Google Scholar] [CrossRef]
- Li, M.-J.; Li, S.; Stone, J.S. Novel optical fibers for distributed sensor applications. In Proceedings of the 25th International Conference on Optical Fiber Sensors (OFS), Jeju, Republic of Korea, 24–28 April 2017. [Google Scholar]
- Szczupak, B.; Olszewski, J.; Madry, M.; Pala, P.; Stefańska, K.; Statkiewicz-Barabach, G. The influence of germanium concentration in the fiber core on temperature sensitivity in Rayleigh scattering based OFDR. IEEE Sens. J. 2021, 21, 20036–20044. [Google Scholar] [CrossRef]
- Ayupova, T.; Shaimerdenova, M.; Korganbayev, S.; Sypabekova, M.; Bekmurzayeva, A.; Blanc, W.; Sales, S.; Guo, T.; Molardi, C.; Tosi, D. Fiber optic refractive index distributed multi-sensors by scattering-level multiplexing with MgO nanoparticle-doped fibers. IEEE Sens. J. 2020, 20, 2504–2510. [Google Scholar] [CrossRef]
- Fuertes, V.; Grégoire, N.; Labranche, P.; Gagnon, S.; Wang, R.; Ledemi, Y.; LaRochelle, S.; Messaddeq, Y. Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers. Sci. Rep. 2021, 11, 9116. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Benedictus, R.; Groves, R.M. Optimization of light scattering enhancement by gold nanoparticles in fused silica optical fiber. Opt. Express 2021, 29, 19450–19464. [Google Scholar] [CrossRef] [PubMed]
- Bulot, P.; Bernard, R.; Cieslikiewicz-Bouet, M.; Laffont, G.; Douay, M. Performance Study of a Zirconia-Doped Fiber for Distributed Temperature Sensing by OFDR at 800 °C. Sensors 2021, 21, 3788. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, K.; Badar, M.; Yi, X.; Lu, P.; Buric, M.; Mao, Z.-H.; Chen, K.P. Improving OFDR Distributed Fiber Sensing by Fibers With Enhanced Rayleigh Backscattering and Image Processing. IEEE Sens. J. 2022, 22, 18471–18478. [Google Scholar] [CrossRef]
- Fu, C.; Sui, R.; Peng, Z.; Meng, Y.; Zhong, H.; Shan, R.; Liang, W.; Liao, C.; Yin, X.; Wang, Y. Wide-Range OFDR Strain Sensor Based on the Femtosecond-Laser-Inscribed Weak Fiber Bragg Grating Array. Opt. Lett. 2023, 48, 5819–5822. [Google Scholar] [CrossRef] [PubMed]
- Wajdzik, J.; Pala, P.; Szulc, D.; Bernaś, M.; Bednarek, A.; Chmielowski, P.; Olszewski, J.; Mergo, P.; Statkiewicz-Barabach, G. Determination of dopant concentration in single-mode step-index optical fiber based on measured numerical aperture and mode field diameter. In Proceedings of the SPIE 12502, 22nd Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, Wojanow, Poland, 18–22 September 2022. [Google Scholar] [CrossRef]
- Dosunmu, O.I.; Cannon, D.D.; Emsley, M.K.; Ghyselen, B.; Liu, J.; Kimerling, L.C.; Unlu, M.S. Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 694–701. [Google Scholar] [CrossRef]
- Lindner, E.; Chojetzki, C.; Brückner, S.; Becker, M.; Rothhardt, M.; Bartelt, H. Thermal regeneration of fiber Bragg gratings in photosensitive fibers. Opt. Express 2009, 17, 12523–12531. [Google Scholar] [CrossRef] [PubMed]
- Tosi, D.; Molardi, C.; Blanc, W.; Paixão, T.; Antunes, P.; Marques, C. Performance analysis of scattering-level multiplexing (SLMux) in distributed fiber-optic backscatter reflectometry physical sensors. Sensors 2020, 20, 2595. [Google Scholar] [CrossRef] [PubMed]
- Beisenova, A.; Issatayeva, A.; Korganbayev, S.; Molardi, C.; Blanc, W.; Tosi, D. Simultaneous Distributed Sensing on Multiple MgO-Doped High Scattering Fibers by Means of Scattering-Level Multiplexing. J. Light. Technol. 2019, 37, 3413–3421. [Google Scholar] [CrossRef]
Mask Period | Diffraction Order m = | 0 | +1 | −1 | +2 | −2 |
---|---|---|---|---|---|---|
2150 nm | Efficiency [%] | 4.5 | 40.8 | 41.8 | 6.4 | 6.5 |
2170 nm | Efficiency [%] | 4.2 | 42.5 | 43.4 | 4.9 | 4.9 |
Type of Fiber | SMF-28 | UHNA7 |
---|---|---|
Core/Cladding Diameter [μm] | 8.2/125 | 2.4/125 |
Mode Field Diameter (MFD) @1550nm [μm] | 11.1 | 3.3 |
Core NA (catalog card) | 0.14 | 0.41 |
Core NA (measured) | 0.149 | 0.47 |
Germanium Dopant Level [mol%] | 3.5 | 39.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczupak, B.; Mądry, M.; Bernaś, M.; Kozioł, P.; Skorupski, K.; Statkiewicz-Barabach, G. The Impact of 1030 nm fs-Pulsed Laser on Enhanced Rayleigh Scattering in Optical Fibers. Sensors 2024, 24, 5980. https://doi.org/10.3390/s24185980
Szczupak B, Mądry M, Bernaś M, Kozioł P, Skorupski K, Statkiewicz-Barabach G. The Impact of 1030 nm fs-Pulsed Laser on Enhanced Rayleigh Scattering in Optical Fibers. Sensors. 2024; 24(18):5980. https://doi.org/10.3390/s24185980
Chicago/Turabian StyleSzczupak, Bogusław, Mateusz Mądry, Marta Bernaś, Paweł Kozioł, Krzysztof Skorupski, and Gabriela Statkiewicz-Barabach. 2024. "The Impact of 1030 nm fs-Pulsed Laser on Enhanced Rayleigh Scattering in Optical Fibers" Sensors 24, no. 18: 5980. https://doi.org/10.3390/s24185980
APA StyleSzczupak, B., Mądry, M., Bernaś, M., Kozioł, P., Skorupski, K., & Statkiewicz-Barabach, G. (2024). The Impact of 1030 nm fs-Pulsed Laser on Enhanced Rayleigh Scattering in Optical Fibers. Sensors, 24(18), 5980. https://doi.org/10.3390/s24185980