Overnight Sleep Staging Using Chest-Worn Accelerometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Preprocessing
2.3. Sleep Stage Estimation
2.4. Performance Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troester, M.M.; Quan, S.F.; Berry, R.B.; Plante, D.T.; Abreu, A.R.; Alzoubaidi, M.; Bandyopadhyay, A.; Delrosso, L.; Ebben, M.; Kwon, Y.; et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2023. [Google Scholar]
- Bianchi, M.T.; Goparaju, B. Potential Underestimation of Sleep Apnea Severity by At-Home Kits: Rescoring In-Laboratory Polysomnography Without Sleep Staging. J. Clin. Sleep Med. 2017, 13, 551–555. [Google Scholar] [CrossRef]
- Hofmann, E. Insomnie-Screening mit dem Home Sleep Test. Nervenheilkunde 2022, 41, 666–672. [Google Scholar] [CrossRef]
- Tăutan, A.-M.; Rossi, A.C.; de Francisco, R.; Ionescu, B. Automatic Sleep Stage Detection: A Study on the Influence of Various PSG Input Signals. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5330–5334. [Google Scholar] [CrossRef]
- Stein, P.K.; Pu, Y. Heart rate variability, sleep and sleep disorders. Sleep Med. Rev. 2012, 16, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Kantelhardt, J.W.; Lo, C.-C.; Voigt, K.; Vogelmeier, C. Dynamics of Heart Rate and Sleep Stages in Normals and Patients with Sleep Apnea. Neuropsychopharmacology 2003, 28, S48–S53. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, M.; Arand, D. Heart rate variability: Sleep stage, time of night, and arousal influences. Electroencephalogr. Clin. Neurophysiol. 1997, 102, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Foussier, J.; Fonseca, P.; Haakma, R.; Aarts, R.M. Analyzing respiratory effort amplitude for automated sleep stage classification. Biomed. Signal Process. Control 2014, 14, 197–205. [Google Scholar] [CrossRef]
- Fonseca, P.; Long, X.; Radha, M.; Haakma, R.; Aarts, R.M.; Rolink, J. Sleep stage classification with ECG and respiratory effort. Physiol. Meas. 2015, 36, 2027–2040. [Google Scholar] [CrossRef]
- Gutierrez, G.; Williams, J.; Alrehaili, G.A.; McLean, A.; Pirouz, R.; Amdur, R.; Jain, V.; Ahari, J.; Bawa, A.; Kimbro, S. Respiratory rate variability in sleeping adults without obstructive sleep apnea. Physiol. Rep. 2016, 4, e12949. [Google Scholar] [CrossRef]
- Hermans, L.W.; Huijben, I.A.; van Gorp, H.; Leufkens, T.R.; Fonseca, P.; Overeem, S.; van Gilst, M.M. Representations of temporal sleep dynamics: Review and synthesis of the literature. Sleep Med. Rev. 2022, 63, 101611. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Alizadeh, I. Automatic sleep staging by cardiorespiratory signals: A systematic review. Sleep Breath. 2022, 26, 965–981. [Google Scholar] [CrossRef]
- Bakker, J.P.; Ross, M.; Vasko, R.; Cerny, A.; Fonseca, P.; Jasko, J.; Shaw, E.; White, D.P.; Anderer, P. Estimating sleep stages using cardiorespiratory signals: Validation of a novel algorithm across a wide range of sleep-disordered breathing severity. J. Clin. Sleep Med. 2021, 17, 1343–1354. [Google Scholar] [CrossRef]
- Imtiaz, S.A. A Systematic Review of Sensing Technologies for Wearable Sleep Staging. Sensors 2021, 21, 1562. [Google Scholar] [CrossRef] [PubMed]
- De Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable Sleep Technology in Clinical and Research Settings. Med. Sci. Sports Exerc. 2019, 51, 1538. [Google Scholar] [CrossRef] [PubMed]
- Depner, C.M.; Cheng, P.C.; Devine, J.K.; Khosla, S.; de Zambotti, M.; Robillard, R.; Vakulin, A.; A Drummond, S.P. Wearable Technologies for Developing Sleep and Circadian Biomarkers: A Summary of Workshop Discussions. Sleep 2019, 43, zsz254. [Google Scholar] [CrossRef] [PubMed]
- Wulterkens, B.M.; Fonseca, P.; Hermans, L.W.; Ross, M.; Cerny, A.; Anderer, P.; Long, X.; van Dijk, J.P.; Vandenbussche, N.; Pillen, S.; et al. It is All in the Wrist: Wearable Sleep Staging in a Clinical Population versus Reference Polysomnography. Nat. Sci. Sleep 2021, 13, 885–897. [Google Scholar] [CrossRef]
- Sana, F.; Isselbacher, E.M.; Singh, J.P.; Heist, E.K.; Pathik, B.; Armoundas, A.A. Wearable Devices for Ambulatory Cardiac Monitoring. J. Am. Coll. Cardiol. 2020, 75, 1582–1592. [Google Scholar] [CrossRef]
- Berry, R.B.; Uhles, M.L.; Abaluck, B.K.; Winslow, D.H.; Schweitzer, P.K.; Gaskins, R.A.; Doekel, R.C.; Emsellem, H.A. NightBalance Sleep Position Treatment Device Versus Auto-Adjusting Positive Airway Pressure for Treatment of Positional Obstructive Sleep Apnea. J. Clin. Sleep Med. 2019, 15, 947–956. [Google Scholar] [CrossRef]
- Schipper, F.; van Sloun, R.J.G.; Grassi, A.; Derkx, R.; Overeem, S.; Fonseca, P. Estimation of respiratory rate and effort from a chest-worn accelerometer using constrained and recursive principal component analysis. Physiol. Meas. 2021, 42, 045004. [Google Scholar] [CrossRef]
- Schipper, F.; van Sloun, R.J.G.; Grassi, A.; Brouwer, J.; van Meulen, F.; Overeem, S.; Fonseca, P. Maximum a posteriori detection of heartbeats from a chest-worn accelerometer. Physiol. Meas. 2024, 45, 035009. [Google Scholar] [CrossRef]
- van Gilst, M.M.; van Dijk, J.P.; Krijn, R.; Hoondert, B.; Fonseca, P.; van Sloun, R.J.G.; Arsenali, B.; Vandenbussche, N.; Pillen, S.; Maass, H.; et al. Protocol of the SOMNIA project: An observational study to create a neurophysiological database for advanced clinical sleep monitoring. BMJ Open 2019, 9, e030996. [Google Scholar] [CrossRef]
- Kathirvel, P.; Manikandan, M.S.; Prasanna, S.R.M.; Soman, K.P. An Efficient R-peak Detection Based on New Nonlinear Transformation and First-Order Gaussian Differentiator. Cardiovasc. Eng. Technol. 2011, 2, 408–425. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Shifa, N.; Dorffner, G.; Patil, S.; Pien, G.; Aurora, R.N. Computer-Assisted Automated Scoring of Polysomnograms Using the Somnolyzer System. Sleep 2015, 38, 1555–1566. [Google Scholar] [CrossRef]
- Bakker, J.P.; Ross, M.; Cerny, A.; Vasko, R.; Shaw, E.; Kuna, S.; Magalang, U.J.; Punjabi, N.M.; Anderer, P. Scoring sleep with artificial intelligence enables quantification of sleep stage ambiguity: Hypnodensity based on multiple expert scorers and auto-scoring. Sleep 2023, 46, zsac154. [Google Scholar] [CrossRef] [PubMed]
- Anderer, P.; Ross, M.; Cerny, A.; Shaw, E. Automated Scoring of Sleep and Associated Events. In Advances in the Diagnosis and Treatment of Sleep Apnea; Penzel, T., Hornero, R., Eds.; Springer International Publishing: Switzerland, Cham, 2022; Volume 1384, pp. 107–130. [Google Scholar] [CrossRef]
- Schipper, F.; van Sloun, R.J.G.; Grassi, A.; Overeem, S.; Fonseca, P. A deep-learning approach to assess respiratory effort with a chest-worn accelerometer during sleep. Biomed. Signal Process. Control 2023, 83, 104726. [Google Scholar] [CrossRef]
- Sateia, M.J. International Classification of Sleep Disorders, 3rd ed.; Text Revision (ICSD-3-TR); American Academy of Sleep Medicine: Darien, IL, USA, 2023. [Google Scholar]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, J.Y.; Cho, J.H.; Choi, J.H. Interrater reliability of sleep stage scoring: A meta-analysis. J. Clin. Sleep Med. 2022, 18, 193–202. [Google Scholar] [CrossRef]
- Celmer, L. AASM Announces First Recipient of Autoscoring Software Certification. American Academy of Sleep Medicine—Association for Sleep Clinicians and Researchers. Available online: https://aasm.org/american-academy-of-sleep-medicine-announces-first-recipient-of-autoscoring-software-certification/ (accessed on 31 May 2024).
- Gao, C.; Li, P.; Morris, C.J.; Zheng, X.; Ulsa, M.C.; Gao, L.; Scheer, F.A.; Hu, K. Actigraphy-Based Sleep Detection: Validation with Polysomnography and Comparison of Performance for Nighttime and Daytime Sleep During Simulated Shift Work. Nat. Sci. Sleep 2022, 14, 1801–1816. [Google Scholar] [CrossRef]
- Kortelainen, J.M.; O Mendez, M.; Bianchi, A.M.; Matteucci, M.; Cerutti, S. Sleep Staging Based on Signals Acquired through Bed Sensor. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 776–785. [Google Scholar] [CrossRef]
- Migliorini, M.; Bianchi, A.M.; Nisticò, D.; Kortelainen, J.; Arce-Santana, E.; Cerutti, S.; O Mendez, M. Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 31 August–4 September 2010; Volume 2010, pp. 3273–3276. [Google Scholar]
- Wang, Z.; Zha, S.; Yu, B.; Chen, P.; Pang, Z.; Zhang, H. Sleep Staging Using Noncontact-Measured Vital Signs. J. Health Eng. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Yi, R.; Enayati, M.; Keller, J.M.; Popescu, M.; Skubic, M. Non-Invasive In-Home Sleep Stage Classification Using a Ballistocardiography Bed Sensor. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 19–22 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perz, S. Short-term heart rate variability—Influence of gender and age in healthy subjects. PLoS ONE 2015, 10, e0118308. [Google Scholar] [CrossRef]
- Moula, A.I.; Parrini, I.; Tetta, C.; Lucà, F.; Parise, G.; Rao, C.M.; Mauro, E.; Parise, O.; Matteucci, F.; Gulizia, M.M.; et al. Obstructive Sleep Apnea and Atrial Fibrillation. J. Clin. Med. 2022, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
Dataset | N | Female | Age 1 (Years) | BMI 1 (kg/m2) |
---|---|---|---|---|
KH | 195 | 77 (39%) | 52 ± 17 [13–83] | 26 ± 4 [19–37] |
OLVG | 128 | 41 (32%) | 46 ± 13 [21–78] | 28 ± 5 [19–47] |
KH + OLVG | 323 | 118 (37%) | 50 ± 15 [13–83] | 28 ± 4 [19–47] |
Task | Cohen’s Kappa 3 | Accuracy 3 (%) | Sensitivity 3 (%) | Specificity 3 (%) | PPV 1,3 (%) |
---|---|---|---|---|---|
Wake/N1+N2 /N3/REM | 0.678 {0.577, 0.749} | 80.8 {75.6, 84.6} | |||
Wake/NREM /REM | 0.745 {0.650, 0.808} | 87.5 {83.1, 90.6} | |||
N1+N2 2 | 0.617 {0.510, 0.699} | 81.8 {77.2, 85.3} | 85.4 {80.2, 90.4} | 79.1 {70.0, 85.1} | 82.6 {76.8, 88.7} |
N3 2 | 0.645 {0.363, 0.769} | 93.6 {91.1, 95.7} | 66.3 ±27.4 | 97.6 {94.5, 99.4} | 65.3 ±32.3 |
REM 2 | 0.779 {0.641, 0.861} | 94.8 {92.1, 96.7} | 76.8 ±21.1 | 97.9 {95.7, 99.1} | 78.0 ±23.9 |
Wake 2 (vs. Sleep) | 0.723 {0.609, 0.804} | 93.3 {89.7, 95.4} | 78.7 {66.2, 88.3} | 96.6 {93.9, 98.1} | 81.1 {68.4, 90.0} |
Estimate → Reference ↓ | N1+N2 | N3 | REM | Wake |
---|---|---|---|---|
N1+N2 | 144,578 (84.2%) | 10,334 (6.0%) | 6558 (3.8%) | 10,150 (5.9%) |
N3 | 10,943 (33.6%) | 21,238 (65.2%) | 271 (0.8%) | 126 (0.4%) |
REM | 9744 (20.7%) | 45 (0.1%) | 36,395 (77.1%) | 1001 (2.1%) |
Wake | 14,009 (20.9%) | 293 (0.4%) | 1865 (2.8%) | 50,898 (75.9%) |
Statistic | PSG 3 | Error 1,3 | 95% LoA 2 |
---|---|---|---|
Total sleep time (min) | 412 {338, 454} | 2.5 {−9.5, 17.0} | −51.0, 107.7 |
Sleep latency (min) | 16 {6, 37} | 1.5 {−2.5, 5.5} | −42.8, 27.9 |
Wake after sleep onset (min) | 60 {32, 106} | −3.0 {−16.8, 8.0} | −101.5, 45.0 |
Stage R latency (min) | 120 {86, 170} | 0.5 {−1.5, 3.0} | −140.8, 131.2 |
Sleep efficiency (%) | 83 {72, 90} | 0.5 {−2.0, 3.5} | −10.9, 21.1 |
Time in Wake (min) | 84 {48, 138} | −2.5 {−17.0, 9.5} | −107.8, 50.9 |
Time in REM (min) | 76 {48, 97} | −3.5 {−15.5, 7.5} | −53.0, 41.3 |
Time in N1+N2 (min) | 274 {229, 308} | 10.0 {−16.8, 36.0} | −72.5, 114.0 |
Time in N3 (min) | 50 {25, 71} | −1.5 {−19.5, 16.8} | −64.5, 61.9 |
Percentage of TST in Wake (%) | 20 {11, 40} | −0.6 {−5.9, 3.2} | −55.7, 21.9 |
Percentage of TST in REM (%) | 19 {15, 24} | −1.2 {−4.2, 1.9} | −13.3, 10.0 |
Percentage of TST in N1+N2 (%) | 67 {61, 74} | 2.1 {−4.3, 7.3} | −18.1, 23.2 |
Percentage of TST in N3 (%) | 13 {7, 18} | −0.6 {−5.6, 4.5} | −17.1, 17.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schipper, F.; Grassi, A.; Ross, M.; Cerny, A.; Anderer, P.; Hermans, L.; van Meulen, F.; Leentjens, M.; Schoustra, E.; Bosschieter, P.; et al. Overnight Sleep Staging Using Chest-Worn Accelerometry. Sensors 2024, 24, 5717. https://doi.org/10.3390/s24175717
Schipper F, Grassi A, Ross M, Cerny A, Anderer P, Hermans L, van Meulen F, Leentjens M, Schoustra E, Bosschieter P, et al. Overnight Sleep Staging Using Chest-Worn Accelerometry. Sensors. 2024; 24(17):5717. https://doi.org/10.3390/s24175717
Chicago/Turabian StyleSchipper, Fons, Angela Grassi, Marco Ross, Andreas Cerny, Peter Anderer, Lieke Hermans, Fokke van Meulen, Mickey Leentjens, Emily Schoustra, Pien Bosschieter, and et al. 2024. "Overnight Sleep Staging Using Chest-Worn Accelerometry" Sensors 24, no. 17: 5717. https://doi.org/10.3390/s24175717
APA StyleSchipper, F., Grassi, A., Ross, M., Cerny, A., Anderer, P., Hermans, L., van Meulen, F., Leentjens, M., Schoustra, E., Bosschieter, P., van Sloun, R. J. G., Overeem, S., & Fonseca, P. (2024). Overnight Sleep Staging Using Chest-Worn Accelerometry. Sensors, 24(17), 5717. https://doi.org/10.3390/s24175717