Ada-LT IP: Functional Discriminant Analysis of Feature Extraction for Adaptive Long-Term Wi-Fi Indoor Localization in Evolving Environments
Abstract
:1. Introduction
- (1)
- We propose the application of functional discriminant analysis (FDA) in combination with transfer learning techniques to tackle the challenge of high offline fingerprint calibration overhead. To achieve this, we generate new feature spaces that focus on the most significant predictors. These predictors enhance the separability of the model, leading to improved accuracy in indoor positioning estimates.
- (2)
- We examined the impact of sampling signal fluctuations on different algorithms in indoor localization scenarios. Multiple training samples were used to assess the influence of sampling fluctuations, while all collected testing samples for each month were used to evaluate algorithm robustness.
- (3)
- We applied covariance analysis (CA) to reduce the multicollinearity problem of the various RSS values collected at a reference point (RP), aiming to minimize computational complexity.
- (4)
- We compare the performance of different feature extraction methods, namely mean signal values, principal component analysis (PCA), and linear discriminant analysis (LDA/FDA), for adaptive LT Wi-Fi IP. We evaluate the effectiveness of these methods based on the achieved metrics and also investigate the hybrid effect of combining features extracted from multiple methods.
2. Related Works
3. Problem Formulation and Framework
- (i)
- Selection of significant signal features based on their mean values.
- (ii)
- Application of FDA and PCA to extract essential features.
- (iii)
- Leveraging positive knowledge transfer into the target domain to enhance indoor location performance.
3.1. Functional Discrimanat Analysis
- Computes mean vectors of each class of dependent variable
- 2.
- Computes within-class and between-class scatter matrices.
- 3.
- Computes eigen values and eigen vectors for the scatter matrix within class and scatter matrix between class .
- 4.
- Sorts the eigen values in descending order and select the top .
- 5.
- Creates a new matrix containing eigenvectors that map to the eigenvalues.
- 6.
- Obtains the new features (i.e., linear discriminants) by taking the dot product of the data and the matrix. Below are the details for the above steps mentioned in 4 to 6. Specifically, we define the training instances matrix of a reference point with a dimension of as . Suppose that we have reference points or categories instead of just only binary classes or outputs. We are now seeking projection by means of projection vectors . The values can be arranged by columns into a projection matrix as such that the following is true:
3.2. Principal Component Analysis
- (1)
- Standardize each RSS value as the following:
- (2)
- Calculate covariance matrix of the RSS sample measurements:
- (3)
- Eigen value decomposition of covariance matrix;
- (4)
- Obtain projection matrix.
Algorithm 1. Construction of refined source domain based on simulated signal parameters and multi-criteria feature extractions (LDA-CA-PCA) |
Input: (1) Offline database ; (2) Testing domain ; (3) Simulation signal parameters; (4) # of testing instances Output: Refined source domain 1. 2. for do 3. for do 4. for do 5. Apply data processing (24–31): 6. —Check outliers and normality of the measurements using histograms and boxplot 7. —Test heteroscedatiy of the measurements using histograms 8. —Establish linearity of the parameteres 9. end for 10. Generate feature spaces based on mean signal values as in Equations (29) and (30) 11. Build refined source domain based on multi-criteria feature extractions 12. Apply LDA to extract features with higher class separabiliy as in Equations (4)–(22) 13. Apply PCA and CA to extract features with sigifiacnt predictord as in Equations (24)–(31) 14. end for 15. end for 16. for do 17. 18. 19. end for 20. return |
Algorithm 2. Proposed knowledge transfer based on mean signal values and hybrid feature extractions (LDA-CA-PCA) for indoor positioning |
Input: (1). Refined Training data ; (2) Testing data ; (3) # of instances , ; Output: 1. Domain mapping of , ; 2. Projection matrix ; 3. Target labels ; 1. for do 2. for do 3. for do 4. Reuse steps from 5–8 of Algorithm 1 5. Apply LDA techniques as detailed in (4–22) 6. end for 7. Make selection on optimal refined features using hybrid matrices 8. end for 9. end for 10. for do 11. for do 12. for do 13. Compute optimal projection matrix applying Equations from (16)–(23) 14. end for 15. end for 16. end for 17. Train a classifier on and and optimize projection matrix of source samples 18. Estimate on by applying the trained classifier 19. return ,,,, |
3.3. Evaluation Metrics for Indoor Positioning Performance
4. Experimental Results and Discussion
4.1. Experiment Setup
4.2. Exploring Wi-Fi RSS Distribution Characteristics
4.3. Comparative Analysis of Methods
- We examined the impact of sampling signal fluctuations on different algorithms in indoor localization scenarios. Multiple training samples were used to assess the influence of sampling fluctuations, while all collected testing samples for each month were used to evaluate algorithm robustness.
- The research question regarding the vulnerability of algorithms to sampling fluctuations has been explored and investigated, as it is an intriguing area of research.
- We demonstrated the challenges posed by the indoor environment through an analysis of multiple training samples. Additionally, we verified the dynamic nature of indoor positioning by conducting multiple sample testing.
- By employing multiple training and testing samples, we can validate the challenges faced in indoor localization scenarios.
4.3.1. Exploring the Significance of Signal Features Collected over the Time Period of Study
- (a)
- Wi-Fi Fingerprint-Based Indoor Location Estimation of Targets Utilizing Original Feature Spaces
- (b)
- Wi-Fi Fingerprint-Based Indoor Location Estimation of Targets Utilizing Derived Feature Spaces based on mean signal strength received values
4.3.2. Feature Extraction Using Data Reduction Techniques
- (a)
- PCA
- (b)
- Functional Discriminant Analysis
4.3.3. Comparison of Localization Performance
4.3.4. Comparative Analysis of Computational Complexity in Algorithmic Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giuliano, R.; Mazzenga, F.; Petracca, M.; Vari, M. Indoor localization system for first responders in emergency scenario. In Proceedings of the 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1821–1826. [Google Scholar]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Zafari, F.; Gkelias, A.; Leung, K.K. A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568–2599. [Google Scholar] [CrossRef]
- Curran, K.; Furey, E.; Lunney, T.; Santos, J.; Woods, D.; McCaughey, A. An evaluation of indoor location determination technologies. J. Locat. Based Serv. 2011, 5, 61–78. [Google Scholar] [CrossRef]
- Kaplan, E.D.; Hegarty, C. (Eds.) Understanding GPS/GNSS: Principles and Applications; Artech House: Norwood, MA, USA, 2017. [Google Scholar]
- Röbesaat, J.; Zhang, P.; Abdelaal, M.; Theel, O. An improved BLE indoor localization with Kalman-based fusion: An experimental study. Sensors 2017, 17, 951. [Google Scholar] [CrossRef] [PubMed]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef]
- Xiao, J.; Zhou, Z.; Yi, Y.; Ni, L.M. A survey on wireless indoor localization from the device perspective. ACM Comput. Surv. (CSUR) 2016, 49, 1–31. [Google Scholar] [CrossRef]
- Gu, Y.; Lo, A.; Niemegeers, I. A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutor. 2009, 11, 13–32. [Google Scholar] [CrossRef]
- Bouet, M.; Dos Santos, A.L. RFID tags: Positioning principles and localization techniques. In Proceedings of the 2008 1st IFIP Wireless Days, Dubai, United Arab Emirates, 24–27 November 2008; pp. 1–5. [Google Scholar]
- Logan, L.; Davids, C.; Davids, C. Determining the Indoor Location of an Emergency Caller in a Multi-story Building. In Proceedings of the 2020 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR), Stevenson, WA, USA, 14 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Che, F.; Ahmed, Q.Z.; Lazaridis, P.I.; Sureephong, P.; Alade, T. Indoor Positioning System (IPS) Using Ultra-Wide Bandwidth (UWB)—For Industrial Internet of Things (IIoT). Sensors 2023, 23, 5710. [Google Scholar] [CrossRef]
- Bianchi, V.; Ciampolini, P.; De Munari, I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Trans. Instrum. Meas. 2018, 68, 566–575. [Google Scholar] [CrossRef]
- Fan, M.; Li, J.; Wang, W. Inertial Indoor Pedestrian Navigation Based on Cascade Filtering Integrated INS/Map Information. Sensors 2022, 22, 8840. [Google Scholar] [CrossRef]
- Gligorić, K.; Ajmani, M.; Vukobratović, D.; Sinanović, S. Visible light communications-based indoor positioning via compressed sensing. IEEE Commun. Lett. 2018, 22, 1410–1413. [Google Scholar] [CrossRef]
- Si, H.; Guo, X.; Ansari, N.; Chen, C.; Duan, L.; Huang, J. Environment-Aware Positioning by Leveraging Unlabeled Crowdsourcing Data. IEEE Internet Things J. 2024, 11, 16436–16449. [Google Scholar] [CrossRef]
- Si, H.; Guo, X.; Ansari, N. Multi-Agent Interactive Localization: A Positive Transfer Learning Perspective. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 553–566. [Google Scholar] [CrossRef]
- Ninh, D.B.; He, J.; Trung, V.T.; Huy, D.P. An effective random statistical method for Indoor Positioning System using WiFi fingerprinting. Future Gener. Comput. Syst. 2020, 109, 238–248. [Google Scholar] [CrossRef]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
- Cinefra, N. An Adaptive Indoor Positioning System Based on Bluetooth Low Energy RSSI. Available online: https://www.politesi.polimi.it/retrieve/a81cb05a-d3fa-616b-e053-1605fe0a889a/NicolaCinefra770910TesiDefinitiva.pdf (accessed on 5 February 2024).
- Cakan, E.; Şahin, A.; Nakip, M.; Rodoplu, V. Multi-layer perceptron decomposition architecture for mobile IoT indoor positioning. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; pp. 253–257. [Google Scholar]
- Cheema, M.A. Indoor location-based services: Challenges and opportunities. SIGSPATIAL Spec. 2018, 10, 10–17. [Google Scholar] [CrossRef]
- He, S.; Chan, S.H. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2015, 18, 466–490. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Y.; Wang, Y.; Chen, X.; Chen, J. WiFi-based indoor positioning technologies for smart indoor spaces. IEEE Access 2020, 8, 199724–199742. [Google Scholar]
- Rappaport, T.S. Wireless Communications: Principles and Practice; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Jahagirdar, S.; Ghatak, A.; Kumar, A.A. WiFi based Indoor Positioning System using Machine Learning and Multi-Node Triangulation Algorithms. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–6. [Google Scholar]
- Kaemarungsi, K.; Krishnamurthy, P. Modeling of indoor positioning systems based on location fingerprinting. In Proceedings of the IEEE Infocom 2004, Hong Kong, China, 7–11 March 2004; Volume 2, pp. 1012–1022. [Google Scholar]
- Hayward, S.J.; van Lopik, K.; Hinde, C.; West, A.A. A survey of indoor location technologies, techniques and applications in industry. Internet Things 2022, 20, 100608. [Google Scholar] [CrossRef]
- Potortì, F.; Park, S.; Jiménez Ruiz, A.R.; Barsocchi, P.; Girolami, M.; Crivello, A.; Lee, S.Y.; Lim, J.H.; Torres-Sospedra, J.; Seco, F.; et al. Comparing the Performance of Indoor Localization Systems through the EvAAL Framework. Sensors 2017, 17, 2327. [Google Scholar] [CrossRef]
- Bellavista-Parent, V.; Torres-Sospedra, J.; Perez-Navarro, A. Comprehensive analysis of applied machine learning in indoor positioning based on wi-fi: An extended systematic review. Sensors 2022, 22, 4622. [Google Scholar] [CrossRef]
- Dwiyasa, F.; Lim, M.H. A survey of problems and approaches in wireless-based indoor positioning. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Madrid, Spain, 4–7 October 2016; pp. 1–7. [Google Scholar]
- Kim, S.C.; Jeong, Y.S.; Park, S.O. RFID-based indoor location tracking to ensure the safety of the elderly in smart home environments. Pers. Ubiquitous Comput. 2013, 17, 1699–1707. [Google Scholar] [CrossRef]
- Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based fingerprinting for indoor localization: A deep learning approach. IEEE Trans. Veh. Technol. 2016, 66, 763–776. [Google Scholar] [CrossRef]
- Abbas, M.; Elhamshary, M.; Rizk, H.; Torki, M.; Youssef, M. WiDeep: WiFi-based accurate and robust indoor localization system using deep learning. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kyoto, Japan, 11–15 March 2019; pp. 1–10. [Google Scholar]
- Youssef, M.; Agrawala, A. The Horus WLAN location determination system. In Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, Seattle, WA, USA, 6–8 June 2005; pp. 205–218. [Google Scholar]
- Xiang, Z.; Song, S.; Chen, J.; Wang, H.; Huang, J.; Gao, X. A wireless LAN-based indoor positioning technology. IBM J. Res. Dev. 2004, 48, 617–626. [Google Scholar] [CrossRef]
- Bahl, P.; Padmanabhan, V.N. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), Tel Aviv, Israel, 26–30 March 2000; Volume 2, pp. 775–784. [Google Scholar]
- Salamah, A.H.; Tamazin, M.; Sharkas, M.A.; Khedr, M. An enhanced WiFi indoor localization system based on machine learning. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–8. [Google Scholar]
- Zhang, W.; Hua, X.; Yu, K.; Qiu, W.; Zhang, S. Domain clustering based WiFi indoor positioning algorithm. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–5. [Google Scholar]
- Ge, X.; Qu, Z. Optimization WIFI indoor positioning KNN algorithm location-based fingerprint. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; pp. 135–137. [Google Scholar]
- Yu, Y.; Chen, R.; Chen, L.; Li, W.; Wu, Y.; Zhou, H. A robust seamless localization framework based on Wi-Fi FTM/GNSS and built-in sensors. IEEE Commun. Lett. 2021, 25, 2226–2230. [Google Scholar] [CrossRef]
- Zayets, A.; Gentner, C.; Steinbach, E. High-precision multipath-based indoor localization scheme with user privacy protection for dynamic NLoS environments. IEEE Access 2021, 9, 116033–116049. [Google Scholar] [CrossRef]
- Bi, J.; Huang, L.; Cao, H.; Yao, G.; Sang, W.; Zhen, J.; Liu, Y. Improved indoor fingerprinting localization method using clustering algorithm and dynamic compensation. ISPRS Int. J. Geo-Inf. 2021, 10, 613. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, S.; Zhang, S.; Wang, Y.; Xiang, C. Multi-floor indoor localization based on multi-modal sensors. Sensors 2022, 22, 4162. [Google Scholar] [CrossRef]
- Huang, L.; Yu, B.; Du, S.; Li, J.; Jia, H.; Bi, J. Multi-Level Fusion Indoor Positioning Technology Considering Credible Evaluation Analysis. Remote Sens. 2023, 15, 353. [Google Scholar] [CrossRef]
- Ferris, B.; Fox, D.; Lawrence, N.D. Wifi-slam using gaussian process latent variable models. In Proceedings of the 20th International Joint Conference on Artifical Intelligence, Hyderabad, India, 6–12 January 2007; Volume 7, pp. 2480–2485. [Google Scholar]
- Kjærgaard, M.B.; Treu, G.; Ruppel, P.; Küpper, A. Efficient indoor proximity and separation detection for location fingerprinting. In Proceedings of the 1st International ICST Conference on Mobile Wireless Middleware, Operating Systems and Applications, Chicago, IL, USA, 30 June–2 July 2010. [Google Scholar]
- Yang, Z.; Wu, C.; Liu, Y. Locating in fingerprint space: Wireless indoor localization with little human intervention. In Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 22–26 August 2012; pp. 269–280. [Google Scholar]
- Rai, A.; Chintalapudi, K.K.; Padmanabhan, V.N.; Sen, R. Zee: Zero-effort crowdsourcing for indoor localization. In Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 22–26 August 2012; pp. 293–304. [Google Scholar]
- Alzantot, M.; Youssef, M. Crowdinside: Automatic construction of indoor floorplans. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 6–9 November 2012; pp. 99–108. [Google Scholar]
- Constandache, I.; Gaonkar, S.; Sayler, M.; Choudhury, R.R.; Cox, L. Enloc: Energy-efficient localization for mobile phones. In Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 2716–2720. [Google Scholar]
- Luo, R.C.; Hsiao, T.J. Indoor localization system based on hybrid Wi-Fi/BLE and hierarchical topological fingerprinting approach. IEEE Trans. Veh. Technol. 2019, 68, 10791–10806. [Google Scholar] [CrossRef]
- Chong AM, S.; Yeo, B.C.; Lim, W.S.; Pratap, S. Integration of UWB RSS to Wi-Fi RSS fingerprinting-based indoor positioning system. Cogent Eng. 2022, 9, 2087364. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Y.; Ge, Z.; Lu, C. Refining Wi-Fi based indoor localization with Li-Fi assisted model calibration in smart buildings. arXiv 2016, arXiv:1602.07399. [Google Scholar]
- Li, D.; Xu, J.; Yang, Z.; Tang, C. Train Once, Locate Anytime for Anyone: Adversarial Learning-based Wireless Localization. ACM Trans. Sens. Netw. 2024, 20, 1–21. [Google Scholar] [CrossRef]
- Yong, L.H.; Zhao, M. Indoor positioning based on hybrid domain transfer learning. IEEE Access 2020, 8, 130527–130539. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.; Chen, Y. A low-overhead indoor positioning system using CSI fingerprint based on transfer learning. IEEE Sens. J. 2021, 21, 18156–18165. [Google Scholar] [CrossRef]
- Brena, R.F.; García-Vázquez, J.P.; Galván-Tejada, C.E.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J., Jr. Evolution of indoor positioning technologies: A survey. J. Sens. 2017, 2017, 2630413. [Google Scholar] [CrossRef]
- Chin, W.L.; Hsieh, C.C.; Shiung, D.; Jiang, T. Intelligent indoor positioning based on artificial neural networks. IEEE Netw. 2020, 34, 164–170. [Google Scholar] [CrossRef]
- Guo, X.; Ansari, N.; Hu, F.; Shao, Y.; Elikplim, N.R.; Li, L. A Survey on Fusion-Based Indoor Positioning. IEEE Commun. Surv. Tutor. 2020, 22, 566–594. [Google Scholar] [CrossRef]
- Basri, C.; El Khadimi, A. Survey on indoor localization system and recent advances of WIFI fingerprinting technique. In Proceedings of the 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 29 September–1 October 2016; pp. 253–259. [Google Scholar]
- Bergen, M.H.; Jin, X.; Guerrero, D.; Chaves, H.A.; Fredeen, N.V.; Holzman, J.F. Design and implementation of an optical receiver for angle-of-arrival-based positioning. J. Light. Technol. 2017, 35, 3877–3885. [Google Scholar] [CrossRef]
- Wann, C.D.; Yeh, Y.J.; Hsueh, C.S. Hybrid TDOA/AOA indoor positioning and tracking using extended Kalman filters. In Proceedings of the 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, VIC, Australia, 7–10 May 2006; Volume 3, pp. 1058–1062. [Google Scholar]
- Xiong, W.; Bordoy, J.; Gabbrielli, A.; Fischer, G.; Schott, D.J.; Höflinger, F.; Wendeberg, J.; Schindelhauer, C.; Rupitsch, S.J. Two efficient and easy-to-use NLOS mitigation solutions to indoor 3-D AOA-based localization. In Proceedings of the 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021; pp. 1–8. [Google Scholar]
- Alteneiji, A.; Ahmad, U.; Poon, K.; Ali, N.; Almoosa, N. Indoor localization in multi-path environment based on AoA with particle filter. In Proceedings of the 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 25–26 November 2020; pp. 1–4. [Google Scholar]
- Lembo, S.; Horsmanheimo, S.; Honkamaa, P. Indoor positioning based on RSS fingerprinting in a LTE network: Method based on genetic algorithms. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Cheerla, S.; Ratnam, D.V. RSS based Wi-Fi positioning method using multi layer neural networks. In Proceedings of the 2018 Conference on Signal Processing and Communication Engineering Systems (SPACES), Vijayawada, India, 4–5 January 2018; pp. 58–61. [Google Scholar]
- Du, X.; Liao, X.; Liu, M.; Gao, Z. CRCLoc: A crowdsourcing-based radio map construction method for WiFi fingerprinting localization. IEEE Internet Things J. 2021, 9, 12364–12377. [Google Scholar] [CrossRef]
- Fang, S.H.; Lin, P.; Lin, T.N. Indoor localization by a novel probabilistic approach. In Proceedings of the 2007 IEEE 8th Workshop on Signal Processing Advances in Wireless Communications, Helsinki, Finland, 17–20 June 2007; pp. 1–4. [Google Scholar]
- Njima, W.; Ahriz, I.; Zayani, R.; Terre, M.; Bouallegue, R. Smart probabilistic approach with RSSI fingerprinting for indoor localization. In Proceedings of the 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 21–23 September 2017; pp. 1–6. [Google Scholar]
- Singh, N.; Choe, S.; Punmiya, R. Machine learning based indoor localization using Wi-Fi RSSI fingerprints: An overview. IEEE Access 2021, 9, 127150–127174. [Google Scholar] [CrossRef]
- Roy, P.; Chowdhury, C. A survey of machine learning techniques for indoor localization and navigation systems. J. Intell. Robot. Syst. 2021, 101, 63. [Google Scholar] [CrossRef]
- Scherhaeufl, M.; Pichler, M.; Schimbaeck, E.; Mueller, D.J.; Ziroff, A.; Stelzer, A. Indoor localization of passive UHF RFID tags based on phase-of-arrival evaluation. IEEE Trans. Microw. Theory Tech. 2013, 61, 4724–4729. [Google Scholar] [CrossRef]
- Giovanelli, D.; Farella, E.; Fontanelli, D.; Macii, D. Bluetooth-based indoor positioning through ToF and RSSI data fusion. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–8. [Google Scholar]
- Yang, F.; Xiong, J.; Liu, J.; Wang, C.; Li, Z.; Tong, P.; Chen, R. A pairwise SSD fingerprinting method of smartphone indoor localization for enhanced usability. Remote Sens. 2019, 11, 566. [Google Scholar] [CrossRef]
- Wang, W.; Li, T.; Wang, W.; Tu, Z. Multiple fingerprints-based indoor localization via GBDT: Subspace and RSSI. IEEE Access 2019, 7, 80519–80529. [Google Scholar] [CrossRef]
- Dai, Q.; Qian, B.; Baotoeng, G.O.; Guo, X.; Ansari, N. GRIDLoc: A Gradient Blending and Deep Learning based Localization Approach Combining RSS and CSI. IEEE Wirel. Commun. Lett. 2024. early access. [Google Scholar] [CrossRef]
- Farid, Z.; Nordin, R.; Ismail, M.; Abdullah, N.F. Hybrid indoor-based WLAN-WSN localization scheme for improving accuracy based on artificial neural network. Mob. Inf. Syst. 2016, 2016, 6923931. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, B.; Wan, X.; Li, X. Hybrid wireless fingerprint indoor localization method based on a convolutional neural network. Sensors 2019, 19, 4597. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, T.; Gong, Y.; Yang, W. Fingerprint database reconstruction based on robust PCA for indoor localization. Sensors 2019, 19, 2537. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, Z.; Song, Z. LDA-based CSI amplitude fingerprinting for device-free localization. In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020. [Google Scholar]
- Sanam, T.F.; Godrich, H. Device free indoor localization using discriminant features of CSI a canonical correlation paradigm. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 423–427. [Google Scholar]
- Yuan, Y.; Liu, X.; Liu, Z.; Xu, Z. MFMCF: A novel indoor location method combining multiple fingerprints and multiple classifiers. In Proceedings of the 2019 3rd International Symposium on Autonomous Systems (ISAS), Shanghai, China, 29–31 May 2019; pp. 216–221. [Google Scholar]
- Wang, J.; Wang, X.; Peng, J.; Hwang, J.G.; Park, J.G. Indoor fingerprinting localization based on fine-grained CSI using principal component analysis. In Proceedings of the 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), Jeju Island, Republic of Korea, 17–20 August 2021; pp. 322–327. [Google Scholar]
- Liu, W.; Cheng, Q.; Deng, Z.; Chen, H.; Fu, X.; Zheng, X.; Zheng, S.; Chen, C.; Wang, S. Survey on CSI-based indoor positioning systems and recent advances. In Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [Google Scholar]
- Subhan, F.; Saleem, S.; Bari, H.; Khan, W.Z.; Hakak, S.; Ahmad, S.; El-Sherbeeny, A.M. Linear discriminant analysis-based dynamic indoor localization using bluetooth low energy (BLE). Sustainability 2020, 12, 10627. [Google Scholar] [CrossRef]
- Hailu, T.; Edris, T. MultiDMet: Designing a Hybrid Multidimensional Metrics Framework to Predictive Modeling for Performance Evaluation and Feature Selection. Intell. Inf. Manag. 2023, 15, 391–425. [Google Scholar] [CrossRef]
- Mendoza-Silva, G.; Richter, P.; Torres-Sospedra, J.; Lohan, E.; Huerta, J. Long-term WiFi fingerprinting dataset for research on robust indoor positioning. Data 2018, 3, 3. [Google Scholar] [CrossRef]
- Li, L.; Guo, X.; Zhang, Y.; Ansari, N.; Li, H. Long short-term indoor positioning system via evolving knowledge transfer. IEEE Trans. Wirel. Commun. 2022, 21, 5556–5572. [Google Scholar] [CrossRef]
- Li, L.; Guo, X.; Zhao, M.; Li, H.; Ansari, N. TransLoc: A heterogeneous knowledge transfer framework for fingerprint-based indoor localization. IEEE Trans. Wirel. Commun. 2021, 20, 3628–3642. [Google Scholar] [CrossRef]
- Zhou, M.; Tang, Y.; Tian, Z.; Xie, L.; Nie, W. Robust neighbor-hood graphing for semi-supervised indoor localization with light-loaded location fingerprinting. IEEE Internet Things J. 2017, 5, 3378–3387. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, S.; Li, L.; Hu, F.; Ansari, N. Accurate WiFi localization by unsupervised fusion of extended candidate location set. IEEE Internet Things J. 2018, 6, 2476–2485. [Google Scholar] [CrossRef]
- Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 2010, 22, 199–210. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Ogunbona, P. Joint geometrical and statistical alignment for visual domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 July 2017; pp. 1859–1867. [Google Scholar]
- Tsai, Y.-H.H.; Yeh, Y.-R.; Wang, Y.-C.F. Learning cross-domain landmarks for heterogeneous domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5081–5090. [Google Scholar]
- Li, J.; Jing, M.; Lu, K.; Zhu, L.; Shen, H.T. Locality preserving joint transfer for domain adaptation. IEEE Trans. Image Process. 2019, 28, 6103–6115. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
The entire feature spaces received from the ith signal measurements of an mth feature space of the kth reference point. | |
# of references point. | |
# of signal measurements received at kth reference point. | |
The grand/combined mean of the signal measurements of the grid point. | |
The ith signal measurements of an mth feature space of the kth reference point. | |
The mean signal values of a reference point or a grid point. | |
/ | # of sources feature spaces/#Targets feature spaces. |
# of instances of the sources/Target domains. | |
/ | Scatter matrix between/within classes. |
Feature spaces matrix of dimension n by p. | |
The y label of the Lth grid points of the pth feature space. | |
The projection matrix of pth features spaces for the corresponding grid points. | |
Determinants of the scatter matrices. | |
The correlation between feature spaces. | |
The ith standardized value of a pth feature space of the kth reference point. | |
/ | Source domain/target domain. |
, | The pth features spaces of the source domain data/target domain data. |
Feature | Size (m2) | BSs | UEs | #RPs | #BSs | #Features | #Offline Samples | #Testing Samples | Collection Period in Months |
---|---|---|---|---|---|---|---|---|---|
RSS | 308.4 | AP | Smartphone | 106 | 620 | 620 | 22,464 | 3120 per month | 25 |
Classifiers | Dataset Collected | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month 1 (Only One Training Dataset) | Month 2 | |||||||||
#MAE (in Meters) | ||||||||||
#Testing Samples | #Testing Samples | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
DT | 2.31 | 2.97 | 4.41 | 5.57 | 2.33 | 2.30 | 2.98 | 4.49 | 5.73 | 2.30 |
KNN | 2.26 | 2.88 | 4.38 | 5.71 | 2.34 | 2.15 | 3.11 | 4.55 | 5.79 | 2.15 |
SVC | 2.22 | 2.87 | 4.38 | 5.52 | 2.28 | 2.26 | 3.04 | 4.50 | 5.72 | 2.25 |
LR | 2.21 | 2.86 | 4.36 | 5.62 | 2.36 | 2.25 | 2.99 | 4.50 | 5.66 | 2.25 |
RF | 2.22 | 3.00 | 4.49 | 5.63 | 2.23 | 2.26 | 3.07 | 4.60 | 5.76 | 2.15 |
GMM | 2.23 | 3.11 | 4.27 | 5.67 | 2.06 | 2.10 | 3.10 | 4.64 | 5.68 | 2.03 |
MLP | 2.02 | 3.49 | 5.10 | 6.07 | 2.04 | 1.92 | 3.50 | 5.14 | 6.06 | 1.92 |
Ada-LT IP | 1.98 | 2.25 | 3.08 | 3.97 | 1.99 | 1.98 | 2.55 | 4.21 | 5.40 | 1.99 |
Classifiers | Dataset Collected | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month 3 (Only One Training Dataset) | Month 4 | |||||||||
#MAE (in Meters) | ||||||||||
#Testing Samples | #Testing Samples | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
DT | 2.24 | 3.03 | 4.45 | 5.70 | 2.30 | 2.28 | 3.03 | 4.42 | 5.69 | 2.26 |
KNN | 2.19 | 3.03 | 4.46 | 5.76 | 2.20 | 2.23 | 3.09 | 4.55 | 5.84 | 2.26 |
SVC | 2.22 | 3.02 | 4.37 | 5.64 | 2.30 | 2.22 | 2.98 | 4.52 | 5.74 | 2.27 |
LR | 2.23 | 3.00 | 4.36 | 5.60 | 2.29 | 2.31 | 3.01 | 4.46 | 5.74 | 2.33 |
RF | 2.12 | 3.07 | 4.49 | 5.75 | 2.14 | 2.15 | 3.09 | 4.60 | 5.81 | 2.17 |
GMM | 2.13 | 2.88 | 4.58 | 5.62 | 2.18 | 2.19 | 3.17 | 4.66 | 5.58 | 2.08 |
MLP | 1.89 | 3.53 | 5.15 | 6.06 | 1.92 | 1.97 | 2.58 | 4.13 | 5.43 | 1.97 |
Ada-LT IP | 1.97 | 2.52 | 4.16 | 5.41 | 1.97 | 1.97 | 2.54 | 4.24 | 5.42 | 1.97 |
Classifiers | Dataset Collected | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month 1 (Only One Training Dataset) | Month 2 | |||||||||
#MAE (in Meters) | ||||||||||
#Testing Samples | #Testing Samples | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
DT | 2.26 | 2.98 | 4.41 | 5.57 | 2.36 | 2.26 | 3.01 | 4.43 | 5.73 | 2.30 |
KNN | 2.15 | 2.88 | 4.38 | 5.71 | 2.34 | 2.15 | 3.11 | 4.55 | 5.79 | 2.15 |
SVC | 2.26 | 2.87 | 4.38 | 5.52 | 2.28 | 2.26 | 3.04 | 4.50 | 5.72 | 2.25 |
LR | 2.25 | 2.86 | 4.36 | 5.62 | 2.36 | 2.25 | 2.99 | 4.50 | 5.66 | 2.25 |
RF | 2.12 | 3.00 | 4.49 | 5.63 | 2.27 | 2.15 | 3.09 | 4.52 | 5.76 | 2.11 |
GMM | 2.55 | 2.98 | 4.27 | 5.80 | 2.22 | 2.34 | 3.05 | 4.56 | 5.68 | 2.17 |
MLP | 1.92 | 3.49 | 5.10 | 6.07 | 2.04 | 1.92 | 3.50 | 5.14 | 6.06 | 1.92 |
Ada-LT IP | 1.25 | 1.73 | 2.61 | 3.44 | 1.27 | 1.26 | 1.74 | 2.64 | 3.50 | 1.26 |
Classifiers | Dataset Collected | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month 3 (Only One Training Dataset/Month) | Month 4 | |||||||||
#MAE (in Meters) | ||||||||||
#Testing Samples | #Testing Samples | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
DT | 2.24 | 3.03 | 4.45 | 5.70 | 2.30 | 2.28 | 3.03 | 4.42 | 5.69 | 2.26 |
KNN | 2.19 | 3.03 | 4.46 | 5.76 | 2.20 | 2.23 | 3.09 | 4.55 | 5.84 | 2.26 |
SVC | 2.22 | 3.02 | 4.37 | 5.64 | 2.30 | 2.22 | 2.98 | 4.52 | 5.74 | 2.27 |
LR | 2.23 | 3.00 | 4.36 | 5.60 | 2.29 | 2.31 | 3.01 | 4.46 | 5.74 | 2.33 |
RF | 2.12 | 3.07 | 4.49 | 5.75 | 2.14 | 2.15 | 3.09 | 4.60 | 5.81 | 2.17 |
GMM | 2.13 | 2.88 | 4.58 | 5.62 | 2.18 | 2.19 | 3.17 | 4.66 | 5.58 | 2.08 |
MLP | 1.89 | 3.53 | 5.15 | 6.06 | 1.92 | 1.97 | 2.58 | 4.13 | 5.43 | 1.97 |
Ada-LT IP | 1.23 | 1.76 | 2.66 | 3.51 | 1.26 | 1.24 | 1.82 | 2.62 | 3.48 | 1.25 |
Dataset Collected | ||||||||
---|---|---|---|---|---|---|---|---|
Month 1 | ||||||||
#Training Samples | #Testing Samples | |||||||
#PCA (Explained Variance Ratio in %) | ||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 |
8 (50%) | 13 (50%) | 15 (50%) | 15 (50%) | 19 (50%) | 17 (50%) | 15 (50%) | 15 (50%) | 17 (50%) |
26 (80%) | 39 (80%) | 45 (80%) | 43 (80%) | 52 (80%) | 48 (80%) | 44 (80%) | 47 (80%) | 49 (80%) |
32 (85%) | 46 (85%) | 52 (85%) | 50 (85%) | 61 (85%) | 56 (85%) | 51 (85%) | 55 (85%) | 56 (85%) |
39 (90%) | 54 (90%) | 62 (90%) | 60 (90%) | 72 (90%) | 67 (90%) | 61 (90%) | 65 (90%) | 66 (90%) |
50 (95%) | 67 (95%) | 77 (95%) | 73 (95%) | 72 (95%) | 67 (95%) | 61 (95%) | 65 (95%) | 99 (95%) |
67 (99%) | 87 (99%) | 99 (99%) | 94 (99%) | 110 (99%) | 105 (99%) | 95 (99%) | 103 (99%) | 99 (99%) |
Dataset Collected | |||||||
---|---|---|---|---|---|---|---|
#Training Samples | #Testing Samples | ||||||
#PCA (Explained Variance Ratio in %) | |||||||
M-1 | M-2 | M-3 | M-4 | M-1 | M-2 | M-3 | M-4 |
8 (50%) | 17 (50%) | 19 (50%) | 16 (50%) | 19 (50%) | 15 (50%) | 19 (50%) | 16 (50%) |
26 (80%) | 51 (80%) | 53 (80%) | 49 (80%) | 52 (80%) | 45 (80%) | 52 (80%) | 45 (80%) |
32 (85%) | 60 (85%) | 62 (85%) | 58 (85%) | 61 (85%) | 54 (85%) | 61 (85%) | 52 (85%) |
39 (90%) | 72 (90%) | 74 (90%) | 70 (90%) | 72 (90%) | 64 (90%) | 73 (90%) | 62 (90%) |
50 (95%) | 88 (95%) | 91 (95%) | 87 (95%) | 72 (95%) | 64 (95%) | 73 (95%) | 62 (95%) |
67 (99%) | 111 (99%) | 114 (99%) | 111 (99%) | 110 (99%) | 100 (99%) | 113 (99%) | 97 (99%) |
Classifiers | Dataset Collected | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month 1 (Only One Training Dataset for Each Month) | Month 2 | |||||||||
#MAE (in Meters) | ||||||||||
#Testing Sample | #Testing Sample | |||||||||
80% | 85% | 90% | 95% | Ref. | 80% | 85% | 90% | 95% | Ref. | |
DT | 2.28 | 2.24 | 2.24 | 2.34 | 2.27 | 2.32 | 2.26 | 2.29 | 2.32 | 2.30 |
KNN | 2.15 | 2.18 | 2.29 | 2.37 | 2.23 | 2.13 | 2.06 | 2.11 | 2.09 | 2.20 |
SVC | 2.68 | 2.79 | 2.79 | 2.72 | 2.52 | 1.88 | 1.88 | 1.88 | 1.88 | 2.07 |
LR | 2.20 | 2.22 | 2.26 | 2.27 | 2.08 | 2.22 | 2.27 | 2.20 | 2.28 | 2.20 |
RF | 2.11 | 2.13 | 2.11 | 2.13 | 2.12 | 2.09 | 2.06 | 2.06 | 2.05 | 2.20 |
GMM | 1.92 | 2.72 | 1.91 | 2.04 | 2.27 | 1.87 | 1.94 | 2.23 | 2.51 | 2.01 |
MLP | 2.23 | 2.23 | 2.28 | 2.23 | 2.21 | 2.23 | 2.28 | 2.23 | 2.32 | 2.27 |
Ada-LT IP | 1.68 | 1.69 | 1.69 | 1.98 | 2.01 | 1.67 | 1.68 | 1.69 | 1.98 | 2.00 |
Classifiers | Dataset Collected | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month 3 (Only One Training Dataset for Each Month) | Month 4 | |||||||||
#MAE (in Meters) | ||||||||||
#Testing Sample | #Testing Sample | |||||||||
80% | 85% | 90% | 95% | Ref. | 80% | 85% | 90% | 95% | Ref. | |
DT | 2.29 | 2.31 | 2.29 | 2.26 | 2.37 | 2.26 | 2.19 | 2.23 | 2.23 | 2.36 |
KNN | 2.26 | 2.28 | 2.28 | 2.24 | 2.21 | 2.14 | 2.14 | 2.18 | 2.18 | 2.17 |
SVC | 1.90 | 1.91 | 1.90 | 1.97 | 2.02 | 2.63 | 2.73 | 2.06 | 2.06 | 2.06 |
LR | 2.32 | 2.29 | 2.30 | 2.28 | 2.28 | 2.23 | 2.27 | 2.31 | 2.31 | 2.20 |
RF | 2.03 | 2.08 | 2.09 | 2.05 | 2.12 | 2.14 | 2.07 | 2.08 | 2.08 | 2.07 |
GMM | 1.87 | 2.34 | 1.87 | 2.66 | 2.31 | 1.87 | 1.87 | 1.87 | 1.87 | 2.09 |
MLP | 2.21 | 2.24 | 2.26 | 2.28 | 2.18 | 2.19 | 2.22 | 2.23 | 2.23 | 2.25 |
Ada-LT IP | 1.67 | 1.68 | 1.69 | 1.97 | 2.00 | 1.68 | 1.67 | 1.69 | 1.98 | 2.01 |
Classifiers | Dataset Collected | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month 1 (Only One Training Dataset for Each Month) | Month 2 | |||||||||
#MAE (in Meters) | ||||||||||
#Testing Samples | #Testing Samples | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
DT | 2.27 | 2.98 | 4.42 | 5.73 | 2.25 | 2.28 | 2.96 | 4.41 | 5.69 | 2.26 |
KNN | 2.16 | 2.98 | 4.43 | 5.78 | 2.19 | 2.23 | 3.12 | 4.54 | 5.84 | 2.24 |
SVC | 2.54 | 3.22 | 4.19 | 6.04 | 2.56 | 2.27 | 3.29 | 4.62 | 6.00 | 2.26 |
LR | 2.18 | 3.01 | 4.40 | 5.72 | 2.27 | 2.26 | 3.00 | 4.43 | 5.70 | 2.26 |
RF | 2.10 | 3.05 | 4.59 | 5.81 | 2.14 | 2.18 | 3.07 | 4.54 | 5.75 | 2.14 |
GMM | 2.37 | 3.10 | 4.48 | 5.81 | 2.13 | 2.56 | 3.42 | 4.38 | 6.11 | 2.56 |
MLP | 2.19 | 3.01 | 4.41 | 5.74 | 2.26 | 2.27 | 2.97 | 4.41 | 5.71 | 2.26 |
Ada-LT IP | 1.43 | 1.91 | 2.75 | 3.63 | 1.53 | 1.30 | 1.84 | 2.66 | 3.50 | 1.37 |
Classifiers | Dataset Collected | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Month 3 (Only One Training Dataset for Each Month) | Month 4 | |||||||||
#MAE (in Meters) | ||||||||||
#Testing Samples | #Testing Samples | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
DT | 2.23 | 3.03 | 4.42 | 5.72 | 2.24 | 2.23 | 3.01 | 4.45 | 5.82 | 2.24 |
KNN | 2.21 | 3.08 | 4.40 | 5.77 | 2.27 | 2.25 | 3.12 | 4.54 | 5.92 | 2.30 |
SVC | 2.59 | 3.29 | 4.19 | 6.13 | 2.62 | 2.68 | 3.29 | 4.18 | 6.13 | 2.73 |
LR | 2.21 | 2.99 | 4.38 | 5.71 | 2.25 | 2.25 | 3.04 | 4.50 | 5.79 | 2.28 |
RF | 2.15 | 3.09 | 4.56 | 5.78 | 2.20 | 2.14 | 3.06 | 4.61 | 5.84 | 2.15 |
GMM | 2.40 | 3.04 | 4.38 | 5.54 | 2.36 | 2.15 | 2.92 | 4.30 | 5.77 | 2.19 |
MLP | 2.20 | 3.01 | 4.36 | 5.69 | 2.24 | 2.24 | 3.03 | 4.51 | 5.81 | 2.27 |
Ada-LT IP | 1.39 | 1.81 | 2.62 | 3.54 | 1.40 | 1.42 | 1.83 | 2.63 | 3.54 | 1.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hailu, T.G.; Guo, X.; Si, H.; Li, L.; Zhang, Y. Ada-LT IP: Functional Discriminant Analysis of Feature Extraction for Adaptive Long-Term Wi-Fi Indoor Localization in Evolving Environments. Sensors 2024, 24, 5665. https://doi.org/10.3390/s24175665
Hailu TG, Guo X, Si H, Li L, Zhang Y. Ada-LT IP: Functional Discriminant Analysis of Feature Extraction for Adaptive Long-Term Wi-Fi Indoor Localization in Evolving Environments. Sensors. 2024; 24(17):5665. https://doi.org/10.3390/s24175665
Chicago/Turabian StyleHailu, Tesfay Gidey, Xiansheng Guo, Haonan Si, Lin Li, and Yukun Zhang. 2024. "Ada-LT IP: Functional Discriminant Analysis of Feature Extraction for Adaptive Long-Term Wi-Fi Indoor Localization in Evolving Environments" Sensors 24, no. 17: 5665. https://doi.org/10.3390/s24175665
APA StyleHailu, T. G., Guo, X., Si, H., Li, L., & Zhang, Y. (2024). Ada-LT IP: Functional Discriminant Analysis of Feature Extraction for Adaptive Long-Term Wi-Fi Indoor Localization in Evolving Environments. Sensors, 24(17), 5665. https://doi.org/10.3390/s24175665