One Raman DTS Interrogator Channel Supports a Dual Separate Path to Realize Spatial Duplexing
Abstract
1. Introduction
2. RDTS and Overview
3. Experiments and Discussions
3.1. DSP–RDTS Scheme
3.2. DSP–RDTS with FSO Scheme
3.3. DSP–RDTS with FSO within One Path Scheme
3.4. DSP–RDTS with Sub-DSP within One Path Scheme
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grattan, K.T.; Sun, T. Meeting industrial needs with optical fiber sensors. In Proceedings of the Optical Fiber Communication Conference (OFC), San Francisco, CA, USA, 6–10 June 2021. [Google Scholar]
- Liu, H.; Hu, D.J.J.; Sun, Q.; Wei, L.; Li, K.; Liao, C.; Li, B.; Zhao, C.; Dong, X.; Tang, Y.; et al. Specialty optical fibers for advanced sensing applications. Opto-Electron. Sci. 2023, 2, 220025. [Google Scholar] [CrossRef]
- Pendão, C.; Silva, I. Optical fiber sensors and sensing networks: Overview of the main principles and applications. Sensors 2022, 22, 7554. [Google Scholar] [CrossRef] [PubMed]
- Jayawickrema, U.M.N.; Herath, H.M.C.M.; Hettiarachchi, N.K.; Sooriyaarachchi, H.P.; Epaarachchi, J.A. Fibre-optic sensor and deep learning-based structural health monitoring systems for civil structures: A review. Measurement 2022, 199, 111543. [Google Scholar] [CrossRef]
- Vorathin, E.; Hafizi, Z.M.; Ismail, N.; Loman, M. Review of high sensitivity fibre-optic pressure sensors for low pressure sensing. Opt. Laser Technol. 2020, 121, 105841. [Google Scholar] [CrossRef]
- Elsherif, M.; Salih, A.E.; Muñoz, M.G.; Alam, F.; AlQattan, B.; Antonysamy, D.S.; Zaki, M.F.; Yetisen, A.K.; Park, S.; Wilkinson, T.D.; et al. Optical fiber sensors: Working principle, applications, and limitations. Adv. Photon. Res. 2022, 3, 2100371. [Google Scholar] [CrossRef]
- Singh, M.J.; Choudhary, S.; Chen, W.B.; Wu, P.C.; Goyal, M.K.; Rajput, A.; Borana, L. Applications of fibre Bragg grating sensors for monitoring geotechnical structures: A comprehensive review. Measurement 2023, 218, 113171. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Avellar, L.; Blanc, W.; Frizera, A.; Marques, C. Opto-electronic smart home: Heterogeneous optical sensors approaches and artificial intelligence for novel paradigms in remote monitoring. IEEE Internet Things J. 2023, 11, 9587–9598. [Google Scholar] [CrossRef]
- Sa’ad, M.S.M.; Ahmad, H.; Alias, M.A.; Zaini, M.K.A.; Samion, M.Z.; Grattan, K.T.; Rahman, B.M.A.; Brambilla, G.; Lim, K.S.; Harun, S.W. Optical fiber Bragg grating-based pressure sensor for soil monitoring applications. Opt. Eng. 2023, 62, 086101. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, J.; Nie, Q.; Zhao, C.; Wang, Z.; Kumar, S.; Marques, C.; Min, R.; Hu, X. SleepSense: Smart pillow with pressure-sensitive FBG-embedded silicone buttons. IEEE Sens. J. 2023, 23, 19324–19331. [Google Scholar] [CrossRef]
- Chiang, L.W.; Lou, Y.J.; Wang, L. Fiber-optic multi-zone intrusion detection system based on Fabry-Perot interferometers with fiber Bragg gratings. IEEE Sens. J. 2024, 24, 10056–10067. [Google Scholar] [CrossRef]
- Arockiyadoss, M.A.; Dehnaw, A.M.; Manie, Y.C.; Hayle, S.T.; Yao, C.K.; Peng, C.H.; Kumar, P.; Peng, P.C. Self-healing fiber Bragg grating sensor system using free-space optics link and machine learning for enhancing temperature measurement. Electronics 2024, 13, 1276. [Google Scholar] [CrossRef]
- Kashaganova, G.; Kozbakova, A.; Kartbayev, T.; Balbayev, G.; Togzhanova, K.; Alimseitova, Z.; Orazaliyeva, S. Research of a fiber sensor based on fiber Bragg grating for road surface monitoring. Electronics 2023, 12, 2491. [Google Scholar] [CrossRef]
- Jati, M.P.; Luthfi, M.I.; Yao, C.K.; Dehnaw, A.M.; Manie, Y.C.; Peng, P.C. An extremely close vibration frequency signal recognition using deep neural networks. Appl. Sci. 2024, 14, 2855. [Google Scholar] [CrossRef]
- Novais, S.; Silva, S.O.; Frazão, O. Curvature detection in a medical needle using a Fabry-Perot cavity as an intensity sensor. Measurement 2020, 151, 107160. [Google Scholar] [CrossRef]
- Novais, S.; Ferreira, M.S.; Pinto, J.L. Relative humidity fiber sensor based on multimode interferometer coated with agarose-gel. Coatings 2018, 8, 453. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, K.; Guo, M.; Li, C.; Li, C.; Zhang, G.; Gong, Z.; Zhou, Z.; Peng, W. Ultra-high sensitive multi-pass absorption enhanced fiber-optic photoacoustic gas analyzer. IEEE Trans. Instrum. Meas. 2022, 72, 1–8. [Google Scholar]
- Suo, L.; Peng, Y.P.; Yao, C.K.; Ren, S.; Lu, X.; Chen, N.K. High sensitivity strain sensors using four-core fibers through a corner-core excitation. Micromachines 2022, 13, 431. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Dong, X.; Lu, C.; Sun, T.; Grattan, K.T.V. Underwater pressure and temperature sensor based on a special dual-mode optical fiber. IEEE Access 2020, 8, 146463–146471. [Google Scholar] [CrossRef]
- Lu, C.; Su, J.; Dong, X.; Sun, T.; Grattan, K.T.V. Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor. J. Light. Technol. 2018, 36, 2796–2802. [Google Scholar] [CrossRef]
- Lu, C.; Su, J.; Dong, X.; Lu, l.; Sun, T.; Grattan, K.T.V. Studies on temperature and strain sensitivities of a few-mode critical wavelength fiber optic sensor. IEEE Sens. J. 2018, 19, 1794–1801. [Google Scholar] [CrossRef]
- Dejband, E.; Yao, C.K.; Manie, Y.C.; Huang, P.Y.; Lee, H.K.; Tan, T.H.; Peng, P.C. Utilizing a tunable delay line interferometer to improve the sensing accuracy of an FBG sensor system. Photonics 2022, 9, 869. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Physics and applications of Raman distributed optical fiber sensing. Light Sci. Appl. 2022, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.C.; Segatto, M.E.; Castellani, C.E. Raman scattering-based distributed temperature sensors: A comprehensive literature review over the past 37 years and towards new avenues. Opt. Fiber Technol. 2022, 74, 103091. [Google Scholar] [CrossRef]
- Toda, K.; Otsubo, K.; Noda, K.; Lee, H.; Nakamura, K.; Mizuno, Y. Fiber-optic temperature probe based on low-coherence Brillouin optical correlation-domain reflectometry. Opt. Fiber Technol. 2023, 81, 103435. [Google Scholar] [CrossRef]
- Leandro, D.; Zhu, M.; López-Amo, M.; Murayama, H. Quasi-distributed vibration sensing based on weak reflectors and STFT demodulation. J. Light. Technol. 2020, 38, 6954–6960. [Google Scholar] [CrossRef]
- Fernandez, I.; Berrocal, C.G.; Rempling, R. Two-dimensional strain field analysis of reinforced concrete D-regions based on distributed optical fibre sensors. Eng. Struct. 2023, 278, 115562. [Google Scholar] [CrossRef]
- Yao, C.K.; Lin, T.C.; Chen, H.M.; Hsu, W.Y.; Manie, Y.C.; Peng, P.C. Inclination measurement adopting Raman distributed temperature sensor. IEEE Sens. J. 2023, 23, 22543–22555. [Google Scholar] [CrossRef]
- Yao, C.K.; Manie, Y.C.; Chen, H.M.; Hsu, W.Y.; Lin, T.C.; Peng, P.C. Involvement of free-space optics in Raman distributed temperature sensing. Opt. Lett. 2023, 48, 6340–6343. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Yang, C.; Zhang, Z.; Zhang, Y.; Zhang, X. Hybrid distributed optical fiber sensor for the multi-parameter measurements. Sensors 2023, 23, 7116. [Google Scholar] [CrossRef]
- Yao, C.K.; Lin, H.P.; Cheng, C.L.; Li, Y.L.; Du, L.Y.; Peng, P.C. Satellite communication and free space optics for open radio access network. J. Light. Technol. 2024, 42, 3546–3553. [Google Scholar] [CrossRef]
- Dehnaw, A.M.; Manie, Y.C.; Du, L.Y.; Yao, C.K.; Jiang, J.W.; Liu, B.X.; Peng, P.C. Integrated sensor-optics communication system using bidirectional fiber and FSO channels and hybrid deep learning techniques. Sensors 2023, 23, 8434. [Google Scholar] [CrossRef] [PubMed]
- Manie, Y.C.; Yao, C.K.; Peng, P.C. Free-space optical and optical Networks. In Handbook of Radio and Optical Networks Convergence; Springer Nature: Singapore, 2024. [Google Scholar]
- Yeh, C.H.; Lin, W.P.; Jiang, S.Y.; Hsieh, S.E.; Hsu, C.H.; Chow, C.W. Integrated fiber-FSO WDM access system with fiber fault protection. Electronics 2022, 11, 2101. [Google Scholar] [CrossRef]
- Yeh, C.H.; Ko, H.S.; Liaw, S.K.; Liu, L.H.; Chen, J.H.; Chow, C.W. A survivable and flexible WDM access network by alternate FSO-and fiber-paths for fault protection. IEEE Photonics J. 2022, 14, 1–5. [Google Scholar] [CrossRef]
- Van de Giesen, N.; Steele-Dunne, S.C.; Jansen, J.; Hoes, O.; Hausner, M.B.; Tyler, S.; Selker, J. Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data. Sensors 2012, 12, 5471–5485. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.; Henstock, T.; Pilgrim, J.; Dix, J.; Gernon, T.; Thompson, C. Thermal ratings of submarine HV cables informed by environmental considerations. In Proceedings of the 9th International Conference on Insulated Power Cables, Versailles, France, 21–25 June 2015. [Google Scholar]
- Hermansen, C.H. Using Deep Learning for Anomaly Detection in Distributed Temperature Sensing Systems for Submarine Export Cables. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2019. [Google Scholar]
- Soto, M.A.; Nannipieri, T.; Signorini, A.; Lazzeri, A.; Baronti, F.; Roncella, R.; Bolognini, G.; Di Pasquale, F. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. Opt. Lett. 2011, 36, 2557–2559. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Z.; Hong, X.; Zaslawski, S.; Wang, S.; Soto, M.A.; Gao, X.; Wu, J.; Thévenaz, L. Genetic-optimised aperiodic code for distributed optical fibre sensors. Nat. Commun. 2020, 11, 5774. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, C.-K.; Peng, C.-H.; Chen, H.-M.; Hsu, W.-Y.; Lin, T.-C.; Manie, Y.C.; Peng, P.-C. One Raman DTS Interrogator Channel Supports a Dual Separate Path to Realize Spatial Duplexing. Sensors 2024, 24, 5277. https://doi.org/10.3390/s24165277
Yao C-K, Peng C-H, Chen H-M, Hsu W-Y, Lin T-C, Manie YC, Peng P-C. One Raman DTS Interrogator Channel Supports a Dual Separate Path to Realize Spatial Duplexing. Sensors. 2024; 24(16):5277. https://doi.org/10.3390/s24165277
Chicago/Turabian StyleYao, Cheng-Kai, Chun-Hsiang Peng, Hung-Ming Chen, Wen-Yang Hsu, Tzu-Chiao Lin, Yibeltal Chanie Manie, and Peng-Chun Peng. 2024. "One Raman DTS Interrogator Channel Supports a Dual Separate Path to Realize Spatial Duplexing" Sensors 24, no. 16: 5277. https://doi.org/10.3390/s24165277
APA StyleYao, C.-K., Peng, C.-H., Chen, H.-M., Hsu, W.-Y., Lin, T.-C., Manie, Y. C., & Peng, P.-C. (2024). One Raman DTS Interrogator Channel Supports a Dual Separate Path to Realize Spatial Duplexing. Sensors, 24(16), 5277. https://doi.org/10.3390/s24165277