Enhancing Reconfigurable Intelligent Surface-Enabled Cognitive Radio Networks for Sixth Generation and Beyond: Performance Analysis and Parameter Optimization
Abstract
:1. Introduction
1.1. Related Works
1.2. Motivations and Contributions
- Our proposition involves RIS-assisted CR networks, wherein the base station (BS) communicates signals to two users, referred to as the primary user (PU) and secondary user (SU), via direct and reflected signal paths, respectively. This strategy aligns with the standards of 6G and beyond networks, thereby enhancing practicality and applicability in contemporary network paradigms.
- We develop mathematical formulations for SU within the RIS-assisted CR system. We validate the accuracy and efficacy of these formulations through Monte Carlo simulations.
- We conduct a comprehensive analysis of the performance of RIS-assisted CR systems. Our examination covers various factors such as the influence of SNR, power allocations, the quantity of reflected surfaces, and variations in blocklength. These analyses provide valuable insights that can guide the thoughtful design of RIS-assisted CR systems.
1.3. Organization and Notation
2. System Model and Channel Characteristics
System Model
3. Outage Probability Analysis
3.1. Exact Calculation of OP
3.2. Asymptotic Calculation of Key Performance Indicators
3.3. Throughput Analysis
Algorithm 1: The algorithm of finding the optimal throughput coefficient . |
4. Ergodic Rate Analysis
5. Energy Efficiency
6. Numerical Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Proposition 1
Appendix B. Proof of Proposition 2
References
- Balachander, T.; Ramana, K.; Mohana, R.M.; Srivastava, G.; Gadekallu, T.R. Cooperative Spectrum Sensing Deployment for Cognitive Radio Networks for Internet of Things 5G Wireless Communication. Tsinghua Sci. Technol. 2024, 29, 698–720. [Google Scholar] [CrossRef]
- Al-Sudani, H.; Thabit, A.A.; Dalveren, Y. Cognitive Radio and Its Applications in the New Trend of Communication System: A Review. In Proceedings of the 2022 5th International Conference on Engineering Technology and Its Applications (IICETA), Al-Najaf, Iraq, 31 May 2022–1 June 2022; pp. 419–423. [Google Scholar] [CrossRef]
- Oyewobi, S.S.; Djouani, K.; Kurien, A.M. A review of industrial wireless communications, challenges, and solutions: A cognitive radio approach. Trans. Emerg. Telecommun. Technol. 2020, 31, e4055. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, Y.; Wu, Y.C. Energy Sensitive Binary Offloading for Reconfigurable-Intelligent-Surface-Assisted Wireless Powered Mobile Edge Computing. IEEE Internet Things J. 2024, 11, 11593–11605. [Google Scholar] [CrossRef]
- Ahmed, F.; Hassan, T.; Melouki, N.; Naseri, H.; PourMohammadi, P.; Iqbal, A.; Denidni, T.A. A Multibit and Frequency-Reconfigurable Reflecting Surface for RIS Applications. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 653–657. [Google Scholar] [CrossRef]
- Zhao, M.M.; Wu, Q.; Zhao, M.J.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Networks: Two-Timescale Beamforming Optimization. IEEE Trans. Wirel. Commun. 2021, 20, 2–17. [Google Scholar] [CrossRef]
- Ennajih, A.; Sardi, A.; Sadik, M.; Zbitou, J. Design and Analysis of Intelligent Reflecting Surface for 5G Applications. In Proceedings of the 2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM), Istanbul, Turkiye, 26–28 October 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Arzykulov, S.; Nauryzbayev, G.; Celik, A.; Eltawil, A.M. RIS-Assisted Full-Duplex Relay Systems. IEEE Syst. J. 2022, 16, 5729–5740. [Google Scholar] [CrossRef]
- Yuan, J.; Liang, Y.C.; Joung, J.; Feng, G.; Larsson, E.G. Intelligent Reflecting Surface-Assisted Cognitive Radio System. IEEE Trans. Commun. 2021, 69, 675–687. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Tao, W.; Jia, Z.; Song, T.; Pan, C. Intelligent Reflecting Surface Aided MIMO Cognitive Radio Systems. IEEE Trans. Veh. Technol. 2020, 69, 11445–11457. [Google Scholar] [CrossRef]
- El Mettiti, A.; Saber, M.; Chehri, A.; Chaibi, H.; Badaoui, A.; Saadane, R. Reconfigurable Intelligent Surfaces and DF-Relay Improved Spectral Efficiency in Cognitive Radio Networks. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023. [Google Scholar] [CrossRef]
- Asiedu, D.K.P.; Yun, J.H. Multiuser NOMA With Multiple Reconfigurable Intelligent Surfaces for Backscatter Communication in a Symbiotic Cognitive Radio Network. IEEE Trans. Veh. Technol. 2023, 72, 5300–5316. [Google Scholar] [CrossRef]
- Khoshafa, M.H.; Ngatched, T.M.N.; Ahmed, M.H. RIS-Aided Physical Layer Security Improvement in Underlay Cognitive Radio Networks. IEEE Syst. J. 2023, 17, 6437–6448. [Google Scholar] [CrossRef]
- Zhang, G.; Gu, X.; Duan, W.; Wen, M.; Choi, J.; Gao, F.; Ho, P.H. Hybrid Time-Switching and Power-Splitting EH Relaying for RIS-NOMA Downlink. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 146–158. [Google Scholar] [CrossRef]
- Cao, G.; Li, M.; Yuan, H.; Chen, W.; Li, L.; Raouf, A. Error Performance of RIS-Assisted NOMA Networks with Imperfect Channel State Information. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, T.; Mu, X.; Liu, Y. NOMA for STAR-RIS Assisted UAV Networks. IEEE Trans. Commun. 2024, 72, 1732–1745. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, L.; Cui, J.; Dong, Z.; Ding, Z. Delay and Energy Minimization for Cooperative NOMA-MEC Networks with SWIPT Aided by RIS. IEEE Trans. Veh. Technol. 2024, 73, 5321–5334. [Google Scholar] [CrossRef]
- Usman, M.; Basharat, S.; Pervaiz, H.; Hassan, S.A.; Jung, H. On the BER Performance of RIS-Enhanced NOMA-Assisted Backscatter Communication under Nakagami-m Fading. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW), Bologna, Italy, 10 July 2022; pp. 163–168. [Google Scholar] [CrossRef]
- Vu, T.H.; Jee, A.; Costa, D.B.d.; Kim, S. STAR-RIS Empowered NOMA Systems with Caching and SWIPT. IEEE Open J. Commun. Soc. 2024, 5, 379–396. [Google Scholar] [CrossRef]
- Xie, K.; Cai, G.; Kaddoum, G.; He, J. Performance Analysis and Resource Allocation of STAR-RIS-Aided Wireless-Powered NOMA System. IEEE Trans. Commun. 2023, 71, 5740–5755. [Google Scholar] [CrossRef]
- Goktas, M.B.; Dursun, Y.; Ding, Z. IRS and SWIPT-Assisted Full-Duplex NOMA for 6G umMTC. IEEE Trans. Green Commun. Netw. 2023, 7, 1957–1970. [Google Scholar] [CrossRef]
- Al-Obiedollah, H.; Salameh, H.A.B.; Cumanan, K.; Ding, Z.; Dobre, O.A. Self-Sustainable Multi-IRS-Aided Wireless Powered Hybrid TDMA-NOMA System. IEEE Access 2023, 11, 57428–57436. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network: Joint Active and Passive Beamforming Design. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Han, Y.; Tang, W.; Jin, S.; Wen, C.K.; Ma, X. Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI. IEEE Trans. Veh. Technol. 2019, 68, 8238–8242. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Guan, X.; Wu, Q.; Zhang, R. Intelligent Reflecting Surface Assisted Secrecy Communication: Is Artificial Noise Helpful or Not? IEEE Wirel. Commun. Lett. 2020, 9, 778–782. [Google Scholar] [CrossRef]
- Gong, S.; Lu, X.; Hoang, D.T.; Niyato, D.; Shu, L.; Kim, D.I.; Liang, Y.C. Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2020, 22, 2283–2314. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable Intelligent Surfaces: Principles and Opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Guo, H.; Liang, Y.C.; Chen, J.; Larsson, E.G. Weighted Sum-Rate Optimization for Intelligent Reflecting Surface Enhanced Wireless Networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Yang, P.; Yang, L.; Kuang, W.; Wang, S. Outage Performance of Cognitive Radio Networks With a Coverage-Limited RIS for Interference Elimination. IEEE Wirel. Commun. Lett. 2022, 11, 1694–1698. [Google Scholar] [CrossRef]
- Le, C.B.; Do, D.T.; Silva, A.; Khan, W.U.; Khalid, W.; Yu, H.; Nguyen, N.D. Joint Design of Improved Spectrum and Energy Efficiency With Backscatter NOMA for IoT. IEEE Access 2022, 10, 7504–7519. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, R. Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization. IEEE Wirel. Commun. Lett. 2020, 9, 518–522. [Google Scholar] [CrossRef]
- Van Chien, T.; Papazafeiropoulos, A.K.; Tu, L.T.; Chopra, R.; Chatzinotas, S.; Ottersten, B. Outage Probability Analysis of IRS-Assisted Systems Under Spatially Correlated Channels. IEEE Wirel. Commun. Lett. 2021, 10, 1815–1819. [Google Scholar] [CrossRef]
- Peebles, P.Z., Jr. Probability, Random Variables, and Random Signal Principles; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Bithas, P.S.; Nikolaidis, V.; Kanatas, A.G.; Karagiannidis, G.K. UAV-to-Ground Communications: Channel Modeling and UAV Selection. IEEE Trans. Commun. 2020, 68, 5135–5144. [Google Scholar] [CrossRef]
- Do, T.N.; Kaddoum, G.; Nguyen, T.L.; Da Costa, D.B.; Haas, Z.J. Multi-RIS-aided wireless systems: Statistical characterization and performance analysis. IEEE Trans. Commun. 2021, 69, 8641–8658. [Google Scholar] [CrossRef]
- Yue, X.; Liu, Y.; Kang, S.; Nallanathan, A. Performance Analysis of NOMA with Fixed Gain Relaying Over Nakagami-m Fading Channels. IEEE Access 2017, 5, 5445–5454. [Google Scholar] [CrossRef]
- Singh, C.K.; Upadhyay, P.K. Overlay Cognitive IoT-Based Full-Duplex Relaying NOMA Systems With Hardware Imperfections. IEEE Internet Things J. 2022, 9, 6578–6596. [Google Scholar] [CrossRef]
- Xu, Y.; Gui, G.; Gacanin, H.; Adachi, F. A Survey on Resource Allocation for 5G Heterogeneous Networks: Current Research, Future Trends, and Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 668–695. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Khan, W.U.; Zeng, M.; Li, D.; K, R.G.; Li, L. Physical Layer Security of Cognitive Ambient Backscatter Communications for Green Internet-of-Things. IEEE Trans. Green Commun. Netw. 2021, 5, 1066–1076. [Google Scholar] [CrossRef]
- Vu, T.H.; Nguyen, T.V.; Kim, S. Wireless Powered Cognitive NOMA-Based IoT Relay Networks: Performance Analysis and Deep Learning Evaluation. IEEE Internet Things J. 2022, 9, 3913–3929. [Google Scholar] [CrossRef]
- Do, D.T.; Le, C.B.; Vahid, A.; Mumtaz, S. Antenna Selection and Device Grouping for Spectrum-Efficient UAV-Assisted IoT Systems. IEEE Internet Things J. 2023, 10, 8014–8030. [Google Scholar] [CrossRef]
- Yue, X.; Liu, Y. Performance Analysis of Intelligent Reflecting Surface Assisted NOMA Networks. IEEE Trans. Wirel. Commun. 2022, 21, 2623–2636. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: New York, NY, USA, 1972. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, H.Q.; Lee, B.M. Enhancing Reconfigurable Intelligent Surface-Enabled Cognitive Radio Networks for Sixth Generation and Beyond: Performance Analysis and Parameter Optimization. Sensors 2024, 24, 4869. https://doi.org/10.3390/s24154869
Tran HQ, Lee BM. Enhancing Reconfigurable Intelligent Surface-Enabled Cognitive Radio Networks for Sixth Generation and Beyond: Performance Analysis and Parameter Optimization. Sensors. 2024; 24(15):4869. https://doi.org/10.3390/s24154869
Chicago/Turabian StyleTran, Huu Q., and Byung Moo Lee. 2024. "Enhancing Reconfigurable Intelligent Surface-Enabled Cognitive Radio Networks for Sixth Generation and Beyond: Performance Analysis and Parameter Optimization" Sensors 24, no. 15: 4869. https://doi.org/10.3390/s24154869
APA StyleTran, H. Q., & Lee, B. M. (2024). Enhancing Reconfigurable Intelligent Surface-Enabled Cognitive Radio Networks for Sixth Generation and Beyond: Performance Analysis and Parameter Optimization. Sensors, 24(15), 4869. https://doi.org/10.3390/s24154869