Adaptive Weighted Data Fusion for Line Structured Light and Photometric Stereo Measurement System
Abstract
:1. Introduction
2. Measurement Principle
3. Line Structured Light Measurement
4. Photometric Stereo Measurements
5. Adaptive Weighted Fusion
6. Measurement Results and Discussions
6.1. Measurement and Evaluation of Stairs
6.2. Effect of Different Values of λ
6.3. Measurement of Complex Parts
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, Z.; Shao, M.; Wang, Y.; Hu, M. A Sphere-Based Calibration Method for Line Structured Light Vision Sensor. Adv. Mech. Eng. 2013, 5, 580417. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Mao, Q.; Jin, J.; Huang, F. Line Structured Light 3D Sensing with Synchronous Color Mapping. IEEE Sens. J. 2020, 20, 9796–9805. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, Y.; Cai, G.; Feng, C.; Liao, L.; Xu, B. Correction model of linear structured light sensor in underwater environment. Opt. Lasers Eng. 2022, 153, 107013. [Google Scholar] [CrossRef]
- Xue, Q.; Ji, W.; Meng, H.; Sun, X.; Ye, H.; Yang, X. Estimating the quality of stripe in structured light 3D measurement. Optoelectron. Lett. 2022, 18, 103–108. [Google Scholar] [CrossRef]
- Deng, Z.; Ruan, Y.; Hao, F.; Liu, T. Hand-eye calibration of line structured-light sensor by scanning and reconstruction of a free-placed standard cylindrical target. Measurement 2024, 229, 114487. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Huo, B.; Li, E.; Liu, Y. Image denoising of seam images with deep learning for laser vision seam tracking. IEEE Sens. J. 2022, 22, 6098–6107. [Google Scholar] [CrossRef]
- Mao, Q.; Cui, H.; Hu, Q.; Ren, X. A rigorous fastener inspection approach for high-speed railway from structured light sensors. ISPRS J. Photogramm. Remote Sens. 2018, 143, 249–267. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Liu, L. Research progress of the line structured light measurement technique. J. Hebei Univ. Sci. Technol. 2018, 39, 116–124. [Google Scholar]
- Fan, H.; Qi, L.; Wang, N.; Dong, J.; Chen, Y.; Yu, H. Deviation correction method for close-range photometric stereo with nonuniform illumination. Opt. Eng. 2017, 56, 103102. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Liu, J.; Pei, X.; Sun, F.; Shi, L.; Fang, S. A multi-scale methodology of turbine blade surface recovery based on photometric stereo through fast calibrations. Opt. Lasers Eng. 2022, 150, 106837. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Yan, N.; Yuan, S.; Zhang, X. A novel image registration-based dynamic photometric stereo method for online defect detection in aluminum alloy castings. Digit. Signal Process. 2023, 141, 104165. [Google Scholar] [CrossRef]
- Wang, S.; Xu, K.; Li, B.; Cao, X. Online micro defects detection for ductile cast iron pipes based on twin light photometric stereo. Case Stud. Constr. Mater. 2023, 19, e02561. [Google Scholar] [CrossRef]
- Gould, J.; Clement, S.; Crouch, B.; King, R.S. Evaluation of photometric stereo and elastomeric sensor imaging for the non-destructive 3D analysis of questioned documents—A pilot study. Sci. Justice 2023, 63, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.; Stephen, B.; Brown, B.; McArthur, S.; Gorman, D.; Forbes, A.; Pottier, C.; McAlorum, J.; Dow, H.; Perry, M. Photometric stereo data for the validation of a structural health monitoring test rig. Data Brief 2024, 53, 110164. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, I.; Dev, A.; Mohapatra, A.K. A face recognition taxonomy and review framework towards dimensionality, modality and feature quality. Eng. Appl. Artif. Intell. 2023, 126, 107056. [Google Scholar] [CrossRef]
- Sikander, G.; Anwar, S.; Husnain, G.; Thinakaran, R.; Lim, S. An Adaptive Snake Based Shadow Segmentation for Robust Driver Fatigue Detection: A 3D Facial Feature based Photometric Stereo Perspective. IEEE Access 2023, 11, 99178–99188. [Google Scholar] [CrossRef]
- Bornstein, D.; Keep, T.J. New Dimensions in Conservation Imaging: Combining Photogrammetry and Photometric Stereo for 3D Documentation of Heritage Artefacts. AICCM Bull. 2023, 1–15. [Google Scholar] [CrossRef]
- Woodham, R.J. Photometric method for determining surface orientation from multiple images. Opt. Eng. 1980, 19, 191139. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, J.; Li, Y.; Liu, X.; Yao, W. Data fusion of line structured light and photometric stereo point clouds based on wavelet transformation. In Proceedings of the Third International Computing Imaging Conference (CITA 2023), Sydney, Australia, 1–3 June 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12921, pp. 960–964. [Google Scholar]
- Nehab, D.; Rusinkiewicz, S.; Davis, J.; Ramamoorthi, R. Efficiently combining positions and normals for precise 3D geometry. ACM Trans. Graph. (TOG) 2005, 24, 536–543. [Google Scholar] [CrossRef]
- Haque, M.; Chatterjee, A.; Madhav Govindu, V. High quality photometric reconstruction using a depth camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2275–2282. [Google Scholar]
- Zhang, Q.; Ye, M.; Yang, R.; Matsushita, Y.; Wilburn, B.; Yu, H. Edge-preserving photometric stereo via depth fusion. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2472–2479. [Google Scholar]
- Okatani, T.; Deguchi, K. Optimal integration of photometric and geometric surface measurements using inaccurate reflectance/illumination knowledge. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 254–261. [Google Scholar]
- Bruno, F.; Bianco, G.; Muzzupappa, M.; Barone, S.; Razionale, A.V. Experimentation of structured light and stereo vision for underwater 3D reconstruction. ISPRS J. Photogramm. Remote Sens. 2011, 66, 508–518. [Google Scholar] [CrossRef]
- Massot-Campos, M.; Oliver-Codina, G.; Kemal, H.; Petillot, Y.; Bonin-Font, F. Structured light and stereo vision for underwater 3D reconstruction. In Proceedings of the OCEANS 2015-Genova, Genova, Italy, 18–21 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Li, X.; Fan, H.; Qi, L.; Chen, Y.; Dong, J.; Dong, X. Combining encoded structured light and photometric stereo for underwater 3D reconstruction. In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Riegler, G.; Liao, Y.; Donne, S.; Koltun, V.; Geiger, A. Connecting the dots: Learning representations for active monocular depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7624–7633. [Google Scholar]
- Lu, Z.; Tai, Y.W.; Ben-Ezra, M.; Brown, M.S. A framework for ultra high resolution 3D imaging. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1205–1212. [Google Scholar]
- Li, Q.; Ren, J.; Pei, X.; Ren, M.; Zhu, L.; Zhang, X. High-accuracy point cloud matching algorithm for weak-texture surface based on multi-modal data cooperation. Acta Opt. Sin. 2022, 42, 0810001. [Google Scholar]
- Antensteiner, D.; Stolc, S.; Pock, T. A review of depth and normal fusion algorithms. Sensors 2018, 18, 431. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Rao, Y.; Rigall, E.; Qi, L.; Wang, Z.; Dong, J. Near-field photometric stereo using a ring-light imaging device. Signal Process. Image Commun. 2022, 102, 116605. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Huang, F.; Liu, L. Sub-Pixel Extraction of Laser Stripe Center Using an Improved Gray-Gravity Method. Sensors 2017, 17, 814. [Google Scholar] [CrossRef]
No. | CMM | 1 | 2 | 3 | 4 | 5 | MAE | RE |
---|---|---|---|---|---|---|---|---|
H1 | 7.9992 | 7.9664 | 7.9703 | 7.9895 | 7.9734 | 7.9741 | 0.0245 | 0.31% |
H2 | 13.9982 | 13.9340 | 13.9270 | 13.9491 | 13.9377 | 13.9331 | 0.0620 | 0.44% |
H3 | 17.9987 | 17.9987 | 17.9206 | 17.9167 | 17.9421 | 17.9208 | 0.0735 | 0.41% |
No. | CMM | 1 | 2 | 3 | 4 | 5 | MAE | RE |
---|---|---|---|---|---|---|---|---|
H1 | 7.9992 | 8.0009 | 7.9846 | 8.0018 | 7.9862 | 8.0023 | 0.0040 | 0.05% |
H2 | 13.9982 | 13.9694 | 13.9664 | 13.9797 | 13.9594 | 13.9809 | 0.0270 | 0.19% |
H3 | 17.9987 | 17.9680 | 17.9607 | 17.9702 | 17.9499 | 17.9809 | 0.0328 | 0.18% |
No. | CMM | LSL | AE | PS | MAE | Fusion | AE |
---|---|---|---|---|---|---|---|
H1 | 7.9992 | 7.9791 | 0.0201 | 6.1526 | 1.8466 | 8.0095 | 0.0103 |
H2 | 13.9982 | 13.9919 | 0.0063 | 11.3644 | 2.6338 | 14.0121 | 0.0139 |
H3 | 17.9987 | 18.0336 | 0.0349 | 17.0367 | 0.9620 | 18.0280 | 0.0293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Li, Y.; Zhang, Z.; Li, T.; Zhou, J. Adaptive Weighted Data Fusion for Line Structured Light and Photometric Stereo Measurement System. Sensors 2024, 24, 4187. https://doi.org/10.3390/s24134187
Shi J, Li Y, Zhang Z, Li T, Zhou J. Adaptive Weighted Data Fusion for Line Structured Light and Photometric Stereo Measurement System. Sensors. 2024; 24(13):4187. https://doi.org/10.3390/s24134187
Chicago/Turabian StyleShi, Jianxin, Yuehua Li, Ziheng Zhang, Tiejun Li, and Jingbo Zhou. 2024. "Adaptive Weighted Data Fusion for Line Structured Light and Photometric Stereo Measurement System" Sensors 24, no. 13: 4187. https://doi.org/10.3390/s24134187
APA StyleShi, J., Li, Y., Zhang, Z., Li, T., & Zhou, J. (2024). Adaptive Weighted Data Fusion for Line Structured Light and Photometric Stereo Measurement System. Sensors, 24(13), 4187. https://doi.org/10.3390/s24134187