Real-World Spatial Synchronization of Event-CMOS Cameras through Deep Learning: A Novel CNN-DGCNN Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Workflow Overview
2.2. Event Camera Data Format
2.3. Dataset Creation
2.3.1. Data Sources
2.3.2. Data Segmentation
2.3.3. Labeling and Variations
- Top left illustration: Here, the CMOS camera frame is shifted to the left (Δx < 0) and upwards (Δy < 0) relative to the event camera frame, depicting a negative shift along both axes.
- Top right illustration: The CMOS camera frame is shifted to the right (Δx > 0) and upwards (Δy < 0) with respect to the event camera frame, illustrating a positive shift along the X axis and a negative shift along the Y axis.
- Bottom left illustration: This scenario shows the CMOS camera frame shifted to the left (Δx < 0) and downwards (Δy > 0) in comparison to the event camera frame, indicating a negative shift along the X axis and a positive shift along the Y axis.
- Bottom right illustration: The CMOS camera frame is shifted to the right (Δx > 0) and downwards (Δy > 0) relative to the event camera frame, representing a positive shift along both the X and Y axes.
2.4. Network Architecture for CMOS and Event Camera Calibration
2.4.1. Convolutional Neural Network (CNN) for CMOS Data Processing
2.4.2. Dynamic Graph CNN (DGCNN) for Event Data Processing
2.4.3. Network Fusion and Calibration Output
2.5. Computational Setup and Training Parameters
3. Results
- is the number of rows in the input video and the corresponding two-dimensional histogram . In this case, m is defined as 100.
- is is the number of columns in the input video and the corresponding two-dimensional histogram . In this case, is defined as 100.
- is the ratio of the number of events at point (x,y) in the two-dimensional histogram to the total of all events in the histogram.
- represents the calibration error distance;
- are the labeled calibration shift values per each window;
- are the estimated calibration shift values per each window.
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ben-Ezra, M.; Nayar, S.K. Motion deblurring using hybrid imaging. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003. [Google Scholar]
- Rebecq, H.; Ranftl, R.; Koltun, V.; Scaramuzza, D. High speed and high dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1964–1980. [Google Scholar] [CrossRef] [PubMed]
- Gallego, G.; Delbrück, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.J.; Conradt, J.; Daniilidis, K.; et al. Event-based vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 154–180. [Google Scholar] [CrossRef] [PubMed]
- Gehrig, D.; Loquercio, A.; Derpanis, K.G.; Scaramuzza, D. End-to-end learning of representations for asynchronous event-based data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 5633–5643. [Google Scholar]
- Li, X.; Yu, S.; Lei, Y.; Li, N.; Yang, B. Intelligent machinery fault diagnosis with event-based camera. IEEE Trans. Ind. Inform. 2023, 20, 380–389. [Google Scholar] [CrossRef]
- Bardow, P.; Davison, A.J.; Leutenegger, S. Simultaneous optical flow and intensity estimation from an event camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 884–892. [Google Scholar]
- Mueggler, E. Event-Based Vision for High-Speed Robotics. Ph.D. Thesis, University of Zurich, Zürich, Switzerland, 2017. [Google Scholar]
- Glover, A.; Vasco, V.; Bartolozzi, C. A controlled-delay event camera framework for on-line robotics. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018. [Google Scholar]
- Iaboni, C.; Patel, H.; Lobo, D.; Choi, J.-W.; Abichandani, P. Event camera based real-time detection and tracking of indoor ground robots. IEEE Access 2021, 9, 166588–166602. [Google Scholar] [CrossRef]
- Lee, M.S.; Jung, J.H.; Kim, Y.J.; Park, C.G. Event-and Frame-based Visual-Inertial Odometry with Adaptive Filtering based on 8-DOF Warping Uncertainty. IEEE Robot. Autom. Lett. 2023, 9, 1003–1010. [Google Scholar] [CrossRef]
- Muglikar, M.; Gehrig, M.; Gehrig, D.; Scaramuzza, D. How to calibrate your event camera. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1403–1409. [Google Scholar]
- Rebecq, H.; Ranftl, R.; Koltun, V.; Scaramuzza, D. Events-to-video: Bringing modern computer vision to event cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3857–3866. [Google Scholar]
- Kumar, P.P.; Kant, K.; Pal, A. Non-intrusive driving behavior characterization from road-side cameras. IEEE Internet Things J. 2023, 11, 502–509. [Google Scholar] [CrossRef]
- Panetsos, F.; Karras, G.C.; Kyriakopoulos, K.J. Aerial Transportation of Cable-Suspended Loads With an Event Camera. IEEE Robot. Autom. Lett. 2023, 9, 231–238. [Google Scholar] [CrossRef]
- Reinbacher, C.; Munda, G.; Pock, T. Real-time panoramic tracking for event cameras. In Proceedings of the IEEE International Conference on Computational Photography (ICCP), Stanford, CA, USA, 12–14 May 2017; pp. 1–9. [Google Scholar]
- Gallego, G.; Scaramuzza, D. Accurate angular velocity estimation with an event camera. IEEE Robot. Autom. Lett. 2017, 2, 632–639. [Google Scholar] [CrossRef]
- Garbin, C.; Zhu, X.; Marques, O. Dropout vs. batch normalization: An empirical study of their impact to deep learning. Multimed. Tools Appl. 2020, 79, 12777–12815. [Google Scholar] [CrossRef]
- Li, Y.; Wang, N.; Shi, J.; Liu, J.; Hou, X. Revisiting batch normalization for practical domain adaptation. arXiv 2016, arXiv:1603.04779. [Google Scholar]
- Chen, J.; Meng, J.; Wang, X.; Yuan, J. Dynamic graph cnn for event-camera based gesture recognition. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Schindler, G.; Dellaert, F. Atlanta world: An expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004. [Google Scholar]
- Awalludin, E.A.; Yussof, W.N.J.H.W.; Bachok, Z.; Aminudin, M.A.F.; Din, M.S.C.; Hitam, M.S. Monitoring climate change effects on coral reefs using edge-based image segmentation. Int. J. Electr. Comput. Eng. 2024, 14, 398–408. [Google Scholar] [CrossRef]
- Song, W.; Chuang, Z.; Su-Wen, L.; Fu-Sheng, M. Method of measuring atmospheric CO2 based onFabry-Perot interferometer. Acta Phys. Sin. 2024, 73, 020702. [Google Scholar]
- El Shair, Z.A.; Hassani, A.; Rawashdeh, S.A. CSTR: A Compact Spatio-Temporal Representation for Event-Based Vision. IEEE Access 2023, 11, 102899–102916. [Google Scholar] [CrossRef]
- AlRemeithi, H.; Zayer, F.; Dias, J.; Khonji, M. Event Vision for Autonomous Off-Road Navigation. In Artificial Intelligence for Robotics and Autonomous Systems Applications; Springer: Cham, Switzerland, 2023; pp. 239–269. [Google Scholar]
- Song, Y.; Rui, X.; Li, J. AEDNet: An attention-based encoder-decoder network for urban water extraction from high spatial resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1286–1298. [Google Scholar] [CrossRef]
- Liao, S.; Wu, Y.; Ma, K.; Niu, Y. Ant Colony Optimization with Look-ahead Mechanism for Dynamic Traffic Signal Control of IoV Systems. IEEE Internet Things J. 2023, 11, 366–377. [Google Scholar] [CrossRef]
- Menghani, G. Efficient deep learning: A survey on making deep learning models smaller, faster, and better. ACM Comput. Surv. 2023, 55, 1–37. [Google Scholar] [CrossRef]
- Zhang, Y.-J. Camera calibration. In 3-D Computer Vision: Principles, Algorithms and Applications; Springer: Singapore, 2023; pp. 37–65. [Google Scholar]
- Lu, Z.; Cai, L. Camera calibration method with focus-related intrinsic parameters based on the thin-lens model. Opt. Express 2020, 28, 20858–20878. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Cao, H.; Conradt, J.; Tang, H.; Rohrbein, F.; Knoll, A. Event-based neuromorphic vision for autonomous driving: A paradigm shift for bio-inspired visual sensing and perception. IEEE Signal Process. Mag. 2020, 37, 34–49. [Google Scholar] [CrossRef]
- Maqueda, A.I.; Loquercio, A.; Gallego, G.; García, N.; Scaramuzza, D. Event-based vision meets deep learning on steering prediction for self-driving cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5419–5427. [Google Scholar]
- Ahmadizadeh, C.; Galli, V.; Luder, V.; Menon, C. Inductive Textile Sensing for Movement Monitoring. IEEE Sens. Lett. 2023, 8, 5500104. [Google Scholar] [CrossRef]
- Yang, Y.; Rigall, E.; Fan, H.; Dong, J. Point Light Measurement and Calibration for Photometric Stereo. IEEE Trans. Instrum. Meas. 2023, 73, 5001011. [Google Scholar] [CrossRef]
Dataset/Metric | Mean Entropy | STD Entropy | Mean Number of Events | STD Number of Events |
---|---|---|---|---|
Shapes rotation | 12.69 | 0.51 | 95K | 37K |
Outdoors walking | 12.11 | 0.92 | 145K | 67K |
Boxes rotation | 13.23 | 0.05 | 712K | 334K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizrahi, D.; Laufer, I.; Zuckerman, I. Real-World Spatial Synchronization of Event-CMOS Cameras through Deep Learning: A Novel CNN-DGCNN Approach. Sensors 2024, 24, 4050. https://doi.org/10.3390/s24134050
Mizrahi D, Laufer I, Zuckerman I. Real-World Spatial Synchronization of Event-CMOS Cameras through Deep Learning: A Novel CNN-DGCNN Approach. Sensors. 2024; 24(13):4050. https://doi.org/10.3390/s24134050
Chicago/Turabian StyleMizrahi, Dor, Ilan Laufer, and Inon Zuckerman. 2024. "Real-World Spatial Synchronization of Event-CMOS Cameras through Deep Learning: A Novel CNN-DGCNN Approach" Sensors 24, no. 13: 4050. https://doi.org/10.3390/s24134050
APA StyleMizrahi, D., Laufer, I., & Zuckerman, I. (2024). Real-World Spatial Synchronization of Event-CMOS Cameras through Deep Learning: A Novel CNN-DGCNN Approach. Sensors, 24(13), 4050. https://doi.org/10.3390/s24134050