Impact of Cyclic Error on Absolute Distance Measurement Based on Optical Frequency Combs
Abstract
:1. Introduction
2. Principle
3. Numerical Simulation and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.-W. Metrology: Combs rule. Nat. Photonics 2009, 3, 313–314. [Google Scholar] [CrossRef]
- Turyshev, S.G.; Shao, M.; Girerd, A.; Lane, B. A search for new physics with the BEACON mission. Int. J. Mod. Phys. D 2009, 18, 1025–1038. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, J.; Wang, L.; Xiao, L.; Jia, S. Characterization of rubidium thin cell properties with sandwiched structure using a multipath interferometer with an optical frequency comb. Opt. Lett. 2021, 46, 4284. [Google Scholar] [CrossRef]
- Bobroff, N. Recent advances in displacement measuring interferometry. Meas. Sci. Technol. 1993, 4, 907. [Google Scholar] [CrossRef]
- Jang, Y.S.; Wang, G.; Hyun, S.; Kang, H.J.; Chun, B.J.; Kim, Y.J.; Kim, S.W. Comb-referenced laser distance interferometer for industrial nanotechnology. Sci. Rep. 2016, 6, 31770. [Google Scholar] [CrossRef]
- Wang, G.; Jang, Y.; Hyun, S.; Chun, B.J.; Kang, H.J.; Yan, S.; Kim, S.W.; Kim, Y.J. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser. Opt. Express 2015, 23, 9121–9129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Xu, G.; Ni, K.; Zhou, Q.; Wu, G. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement. Opt. Express 2018, 26, 5747–5757. [Google Scholar] [CrossRef]
- Joo, K.-N.; Kim, S.-W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express 2006, 14, 5954–5960. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, S.A.; Persijn, S.T.; Kok, G.J.P.; Zeitouny, M.G.; Bhattacharya, N. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett. 2012, 108, 183901. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, S.A.; van Eldik, S.; Bhattacharya, N. Mode resolved frequency comb interferometry for high-accuracy long distance measurement. Sci. Rep. 2015, 5, 14461. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yu, L.; Xu, X.; Jin, X.; Lu, Y.; Bian, D.; Zheng, R. Correction of the air refractive index using a two-color method for absolute distance measurement without a dead zone. Appl. Opt. 2021, 60, 1241. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Matsukuma, H.; Suzuki, A.; Sato, R.; Gao, W. Enhanced Data-Processing Algorithms for Dispersive Interferometry Using a Femtosecond Laser. Sensors 2024, 24, 370. [Google Scholar] [CrossRef] [PubMed]
- Na, Y.; Jeon, C.G.; Ahn, C.; Hyun, M.; Kwon, D.; Shin, J.; Kim, J. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photonics 2020, 14, 355–360. [Google Scholar] [CrossRef]
- Shi, H.; Song, Y.; Liang, F.; Xu, L.; Hu, M.; Wang, C. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers. Opt. Express 2015, 23, 14057–14069. [Google Scholar] [CrossRef] [PubMed]
- Camenzind, S.L.; Fricke, J.F.; Kellner, J.; Willenberg, B.; Pupeikis, J.; Phillips, C.R.; Keller, U. Dynamic and precise long-distance ranging using a free-running dual-comb laser. Opt. Express 2022, 30, 37245. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ren, X.; Han, B.; Yan, M.; Huang, K.; Liang, Y.; Ge, J.; Zeng, H. Ultra-rapid dual-comb ranging with an extended non-ambiguity range. Opt. Lett. 2022, 47, 5309. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Zhou, S.; Wu, G. Aliasing-free dual-comb ranging system based on free-running fiber lasers. Opt. Express 2021, 29, 33527. [Google Scholar] [CrossRef] [PubMed]
- Salvadé, Y.; Schuhler, N.; Lévêque, S.; Le Floch, S. High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source. Appl. Opt. 2008, 47, 2715–2720. [Google Scholar] [CrossRef] [PubMed]
- Minoshima, K.; Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 2000, 39, 5512–5517. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Han, S.; Lee, K.; Bae, E.; Kim, S.; Lee, S.; Kim, Y.J. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength. Meas. Sci. Technol. 2013, 24, 045201. [Google Scholar] [CrossRef]
- Wu, G.; Liao, L.; Xiong, S.; Li, G.; Cai, Z.; Zhu, Z. Synthetic wavelength interferometry of an optical frequency comb for absolute distance measurement. Sci. Rep. 2018, 8, 4362. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Chao, Z.; Lin, D.; Xu, Y.; Xu, J. Absolute length measurement using changeable synthetic wavelength chain. Opt. Eng. 2002, 41, 746. [Google Scholar] [CrossRef]
- Wu, C.; Su, C. Nonlinearity in measurements of length by optical interferometry. Meas. Sci. Technol. 1996, 7, 62. [Google Scholar] [CrossRef]
- Halverson, P.G.; Spero, R.E. Signal processing and testing of displacement metrology gauges with picometre-scale cyclic nonlinearity. J. Opt. A Pure Appl. Opt. 2002, 4, S304. [Google Scholar] [CrossRef]
- McRae, T.G.; Hsu, M.T.L.; Freund, C.H.; Shaddock, D.A.; Herrmann, J.; Gray, M.B. Linearization and minimization of cyclic error with heterodyne laser interferometry. Opt. Lett. 2012, 37, 2448–2450. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Wilkening, G. Investigation and compensation of the nonlinearity of heterodyne interferometers. Precis. Eng. 1992, 14, 91–98. [Google Scholar] [CrossRef]
- Lay, P.; Dubovitsky, S. Polarization compensation: A passive approach to a reducing heterodyne interferometer nonlinearity. Opt. Lett. 2002, 27, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Kim, J.; Kang, C.; Kim, J.W.; Kim, S. A passive method to compensate nonlinearity in a homodyne interferometer. Opt. Express 2009, 17, 23299–23308. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Zhang, Y.; Hu, H. A simple technique for eliminating the nonlinearity of a heterodyne interferometer. Meas. Sci. Technol. 2009, 20, 105303. [Google Scholar] [CrossRef]
- Joo, K.; Clark, E.; Zhang, Y.; Ellis, J.D.; Guzmán, F. A compact high-precision periodic-error-free heterodyne interferometer. J. Opt. Soc. Am. A 2020, 37, B11–B18. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tian, H.; Minoshima, K. Reduction of cyclic error induced by electromagnetic contamination in an EO-comb based distance measurement system. Results Opt. 2022, 9, 100308. [Google Scholar] [CrossRef]
- Keem, T.; Gonda, S.; Misumi, I.; Huang, Q.; Kurosawa, T. Simple, real-time method for removing the cyclic error of a homodyne interferometer with a quadrature detector system. Appl. Opt. 2005, 44, 3492–3498. [Google Scholar] [CrossRef] [PubMed]
- Keem, T.; Gonda, S.; Misumi, I.; Huang, Q.; Kurosawa, T. Removing nonlinearity of a homodyne interferometer by adjusting the gains of its quadrature detector systems. Appl. Opt. 2004, 43, 2443–2448. [Google Scholar] [CrossRef] [PubMed]
- Minoshima, K.; Schibli, T.R.; Matsumoto, H. Study on cyclic errors in a distance measurement using a frequency comb generated by a mode-locked laser. In Proceedings of the Conference on Lasers and Electro-Optics, San Francisco, CA, USA, 16–21 May 2004. [Google Scholar]
- Kim, W.; Fu, H.; Lee, K.; Han, S.; Jang, Y.-S.; Kim, S.-W. Photonic Microwave Distance Interferometry Using a Mode-Locked Laser with Systematic Error Correction. Appl. Sci. 2020, 10, 7649. [Google Scholar] [CrossRef]
- Xie, J.; Yan, L.; Chen, B.; Zhang, S. Iterative compensation of nonlinear error of heterodyne interferometer. Opt. Express 2017, 25, 4470–4482. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Park, J.; Jin, J. Periodic error free all-fiber distance measurement method with photonic microwave modulation toward on-chip-based devices. IEEE Trans. Instrum. Meas. 2022, 71, 7000907. [Google Scholar] [CrossRef]
- Jang, Y.; Park, J.; Jin, J. Sub-100-nm precision distance measurement by means of all-fiber photonic microwave mixing. Opt. Express 2021, 29, 12229–12239. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Zhu, J.; Guo, X.; Tan, J. Compensation for the variable cyclic error in homodyne laser interferometers. Sensors 2015, 15, 3090–3106. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Lee, J.; Kim, Y.J.; Kim, S.W. Phase-locked synthetic wavelength interferometer using a femtosecond laser for absolute distance measurement without cyclic error. Sensors 2023, 23, 6253. [Google Scholar] [CrossRef] [PubMed]
- Lesko, D.; Timmers, H.; Xing, S.; Kowligy, A.; Lind, A.; Diddams, S. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser. Nat. Photonics 2021, 15, 281. [Google Scholar] [CrossRef]
- Weimann, C.; Messner, A.; Baumgartner, T.; Wolf, S.; Hoeller, F.; Freude, W.; Koos, C. Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs. Opt. Express 2018, 26, 34305. [Google Scholar] [CrossRef] [PubMed]
Case | Retrieved Integer–True Integer | Probability | Measurement Result–True Distance |
---|---|---|---|
0 | 0 | P | Accuracy of SinWI * |
1 | +1 | (1 − P)/2 | ≈NAR of SinWI |
2 | −1 | (1 − P)/2 | ≈−NAR of SinWI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Tian, H.; Shi, J.; Ji, R.; Dong, D.; Zhou, W. Impact of Cyclic Error on Absolute Distance Measurement Based on Optical Frequency Combs. Sensors 2024, 24, 3497. https://doi.org/10.3390/s24113497
Li R, Tian H, Shi J, Ji R, Dong D, Zhou W. Impact of Cyclic Error on Absolute Distance Measurement Based on Optical Frequency Combs. Sensors. 2024; 24(11):3497. https://doi.org/10.3390/s24113497
Chicago/Turabian StyleLi, Runmin, Haochen Tian, Junkai Shi, Rongyi Ji, Dengfeng Dong, and Weihu Zhou. 2024. "Impact of Cyclic Error on Absolute Distance Measurement Based on Optical Frequency Combs" Sensors 24, no. 11: 3497. https://doi.org/10.3390/s24113497
APA StyleLi, R., Tian, H., Shi, J., Ji, R., Dong, D., & Zhou, W. (2024). Impact of Cyclic Error on Absolute Distance Measurement Based on Optical Frequency Combs. Sensors, 24(11), 3497. https://doi.org/10.3390/s24113497