Construction of Chitosan-Modified Naphthalimide Fluorescence Probe for Selective Detection of Cu2+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Synthesis of LCS-a
2.3. Synthesis of LCS-b
2.4. Synthesis of P
2.5. Preparation of the Test Solution
2.6. UV–Vis and Fluorescence Titration
2.7. The Calculation of the Combined Constant
3. Results and Discussion
3.1. FTIR and 1H NMR Spectra of the LCS, LCS-a and LCS-b
3.2. Application of P for the Detection of Cu2+
3.3. Reaction Mechanism Research
3.4. Experimental Condition Optimization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, T.; Yuan, Y.; Kang, H.; Zhang, Y.; Dong, L. Ultrafast, sensitive and visual sensing of copper ions by a dual-fluorescent film based on quantum dots. J. Mater. Chem. C 2019, 7, 14904–14912. [Google Scholar] [CrossRef]
- Mir, A.R.; Pichtel, J.; Hayat, S. Copper: Uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals 2021, 34, 737–759. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.S.; Paul, K.; Luxami, V. A fluorescent probe with “AIE+ESIPT” characteristics for Cu2+ and F− ions estimation. Sens. Actuators B Chem. 2017, 246, 653–661. [Google Scholar] [CrossRef]
- Erdemir, S.; Malkondu, S.; Kocyigit, O. A blue/red dual-emitting multi-responsive fluorescent probe for Fe3+, Cu2+ and cysteine based on isophorone-antharecene. Microchem. J. 2020, 157, 105075. [Google Scholar] [CrossRef]
- Xu, J.; Wang, C.; Li, H.; Zhao, W. Synthesis of green-emitting carbon quantum dots with double carbon sources and their application as a fluorescent probe for selective detection of Cu2+ ions. RSC Adv. 2020, 10, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cao, D.; Meng, X.; Hu, Z.; Li, Z.; Yuan, C.; Zhou, T.; Han, X.; Ma, W. A novel fluorescent chemosensor based on coumarin and quinolinyl-benzothiazole for sequential recognition of Cu2+ and PPi and its applicability in live cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 230, 118022. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bing, Q.; Li, J.; Wang, G. A new “ON-OFF” fluorescent and colorimetric chemosensor based on 1,3,4-oxadiazole derivative for the detection of Cu2+ ions. J. Photochem. Photobiol. A Chem. 2018, 360, 86–94. [Google Scholar] [CrossRef]
- Wang, H.; Fang, B.; Zhou, L.; Li, D.; Kong, L.; Uvdal, K.; Hu, Z. A reversible and highly selective two-photon fluorescent “on-off-on” probe for biological Cu2+ detection. Org. Biomol. Chem. 2018, 16, 2264–2268. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, E. A highly selective “turn-on” fluorescent probe for detecting Cu2+ in two different sensing mechanisms. Dyes Pigments. 2019, 163, 533–537. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, Z.; Li, R.; Yi, F.; Liang, X.; Cheng, S.; Wang, K.; Sun, Y.; Liu, Y. Highly emissive multipurpose organoplatinum (II) metallacycles with contrasting mechanoresponsive features. Inorg. Chem. 2022, 61, 2883–2891. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, Z.; Li, R.; Yuan, C.; Shao, T.; Wang, K.; Tan, H.; Sun, Y. Ligand-triggered platinum (II) metallacycle with mechanochromic and vapochromic responses. Inorg. Chem. 2021, 60, 9387–9393. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Wu, W.N.; Li, S.J.; Xu, Z.H.; Xu, Z.Q.; Fan, Y.C.; Zhao, X.L.; Liu, B.Z. An AIRE active schiff base bearing coumarin and pyrrole unit: Cu2+ detection in either solution or aggregation states. Sens. Actuators B Chem. 2018, 260, 106–115. [Google Scholar] [CrossRef]
- Guo, Z.; Niu, Q.; Li, T.; Sun, T.; Chi, H. A fast, highly selective and sensitive colorimetric and fluorescent sensor for Cu2+ and its application in real water and food samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 97–103. [Google Scholar] [CrossRef]
- Li, B.; Kou, J.; Mei, H.; Gu, X.; Wang, M.; Xie, X.; Xu, K. A hemicyanine-based “turn-on” fluorescent probe for the selective detection of Cu2+ ions and imaging in living cells. Anal. Methods 2020, 12, 4181–4184. [Google Scholar] [CrossRef]
- Huang, K.; Han, D.; Li, X.; Peng, M.; Zeng, X.; Jing, L.; Qin, D. A new Cu2+-selective fluorescent probe with six-membered spirocyclic hydrazide and its application in cell imaging. Dyes Pigments. 2019, 171, 107701. [Google Scholar] [CrossRef]
- Ren, H.; Wu, P.; Li, F.; Jin, L.; Lou, D. Visual colorimetric and fluorescence turn-on probe for Cu(II) ion based on coordination and catalyzed oxidative cyclization of ortho amino azobenzene. Inorg. Chim. Acta 2019, 487, 234–239. [Google Scholar] [CrossRef]
- Ma, L.J.; Liang, Q.; Feng, R.; Lv, Z.; Cui, F.; Li, L.; Yang, L.; Hong, L.; Sun, F. A pyrene-containing Schiff base fluorescent ratiometric probe for the detection of Cu2+ in aqueous solutions and in cells. J. Photoch. Photobio. 2020, 408, 113086. [Google Scholar] [CrossRef]
- Hazarika, S.I.; Mahata, G.; Pahari, P.; Pramanik, N.; Atta, A.K. A simple triazole-linked bispyrenyl-based xylofuranose derivative for selective and sensitive fluorometric detection of Cu2+. Inorg. Chim. Acta 2020, 507, 119582. [Google Scholar] [CrossRef]
- Yang, Y.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, P. Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated newcastle disease vaccine. Carbohyd. Polym. 2020, 229, 115423–115431. [Google Scholar] [CrossRef] [PubMed]
- Romany, A.; Payne, G.F.; Shen, J.A. Effect of acetylation on the nanofibril formation of chitosan from all-atom de novo self-assembly simulations. Molecules. 2024, 29, 561. [Google Scholar] [CrossRef] [PubMed]
- El-Araby, A.; Janati, W.; Ullah, R.; Ercisli, S.; Errachidi, F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: Eco-friendly materials for advanced applications (a review). Front. Chem. 2024, 11, 1327426. [Google Scholar] [CrossRef] [PubMed]
- Pournaki, M.; Fallah, A.; Gulcan, H.O.; Gazi, M. A novel chitosan based fluorescence chemosensor for selective detection of Fe (III) ion in acetic aqueous medium. Mater. Technol. 2021, 36, 91–96. [Google Scholar] [CrossRef]
- Meng, Q.; He, C.; Su, W.; Zhang, X.; Duan, C. A new rhodamine-chitosan fluorescent material for the selective detection of Hg2+ in living cells and efficient adsorption of Hg2+ in natural water. Sens. Actuators B Chem. 2012, 174, 312–317. [Google Scholar] [CrossRef]
- Rodriguez-Caceres, M.I.; Agbaria, R.A.; Warner, I.M. Fluorescence of metal-ligand complexes of monoand di-substituted naphthalene derivatives. J. Fluoresc. 2005, 15, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.C.; Yang, R.; He, H.; Jiang, Y.B. A highly selective charge transfer fluoroionophore for Cu2+. Chem. Commun. 2006, 1, 106–108. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality, 3rd ed.; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Wang, X.; Li, Z.; Nie, J.; Wu, L.; Chen, W.; Qi, S.; Xu, H.; Du, J.; Shan, Y.; Yang, Q. A novel hydrophilic fluorescent probe for Cu2+ detection and imaging in HeLa cells. RSC Adv. 2021, 11, 10264–10271. [Google Scholar] [CrossRef] [PubMed]
- Pršir, K.; Matić, M.; Grbić, M.; Mohr, G.J.; Krištafor, S.; Steinberg, I.M. Naphthalimide-piperazine derivatives as multifunctional “on” and “off” fluorescent switches for pH, Hg2+ and Cu2+ ions. Molecules 2023, 28, 1275. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Sun, W.; Chen, R.; Yuan, Z.; Cheng, X. Fluorescent dialdehyde-BODIPY chitosan hydrogel and its highly sensing ability to Cu2+ ion. Carbohydr. Polym. 2021, 273, 118590. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Wu, Y.; Wang, C.; Zhao, K.; Wu, H. A selective fluorescence probe for copper (II) ion in aqueous solution based on a 1, 8-naphthalimide Schiff base derivative. Z. Naturforsch. B. 2019, 74, 665–670. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Qin, W.; Hu, Q.; Tang, B.Z. Fluorescent detection of Cu(II) by chitosan-based AIE bioconjugate. Chin. J. Polym. Sci. 2017, 35, 365–371. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, Z.; Liang, Y.; Zhou, G.; Li, X.; Xu, X.; Yang, Y.; Wang, S. A naphthalimide functionalized chitosan-based fluorescent probe for specific detection and efficient adsorption of Cu2+. Int. J. Biol. Macromol. 2023, 239, 124261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, Q.; Yu, B.; Yu, C. A pyridine-containing Cu2+-selective probe based on naphthalimide derivative. Sensors 2014, 14, 24146–24155. [Google Scholar] [CrossRef] [PubMed]
Real Samples | Cu2+ (µM) | Sum Results (n = 3) (µM) | Recovery (%) |
---|---|---|---|
Added | |||
Sample 1 | 6.0 | 7.0 | 118 |
8.0 | 8.4 | 105.4 | |
Sample 2 | 6.0 | 6.8 | 112.7 |
8.0 | 8.0 | 100.3 | |
Sample 3 | 6.0 | 6.9 | 115.6 |
8.0 | 8.2 | 102.6 |
Fluorescent Probes | Fluorescence Modes | Respond Time (min) | Reversibility | Linear Range (μM) | LOD (μM) | Testing Media | Applications | Ref. |
---|---|---|---|---|---|---|---|---|
Naphthalimide derivative | Quench ex/em = 390/520 nm | 2 | NA | 0–7.5 | 0.0455 | Water-DMSO (1:9, v:v, pH 6.0) | HeLa cells | [27] |
Naphthalimide derivative | Quench ex/em = 410/523 nm | 2 | NA | 0.25–4.0 | 0.015 | Water-MeOH (2:1, v:v, pH 5.5) | NA | [28] |
Chitosan-based naphthalimide | Enhancement ex/em = 480/557 nm | 1 | NA | 0–55 | 4.75 | NA | NA | [29] |
Naphthalimide derivative | Quench ex/em = 430/525 nm | NA | NA | 0.5–5.0 | 0.567 | Water-MeOH (1:1, v:v, pH 7.4) | River and tap water samples | [30] |
Naphthalimide derivative | Enhancement ex/em = 360/432 nm | NA | reversible | 0.05–0.9 | 0.03 | Water-EtOH (3:2, v:v, pH 7.4) | NA | [33] |
Chitosan-based naphthalimide | Quench ex/em = 338/479 nm | 15 | NA | 5–100 | NA | Acetic acid aqueous solution | Disease diagnose | [31] |
Chitosan-based naphthalimide | Quench ex/em = 365/532 nm | 30 | reversible | 0–40 | 0.029 | Water-DMF (6:4, v:v, pH 7.0) | River, lake and tap water samples | [32] |
Chitosan-based naphthalimide | Quench ex/em = 430/561 nm | 5 | reversible | 0.5–9.0 | 0.027 | Water-EtOH (1:9, v/v, pH 7.0) | NA | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Huang, J.; Yang, M.; Zhang, J. Construction of Chitosan-Modified Naphthalimide Fluorescence Probe for Selective Detection of Cu2+. Sensors 2024, 24, 3425. https://doi.org/10.3390/s24113425
Yu C, Huang J, Yang M, Zhang J. Construction of Chitosan-Modified Naphthalimide Fluorescence Probe for Selective Detection of Cu2+. Sensors. 2024; 24(11):3425. https://doi.org/10.3390/s24113425
Chicago/Turabian StyleYu, Chunwei, Jin Huang, Mei Yang, and Jun Zhang. 2024. "Construction of Chitosan-Modified Naphthalimide Fluorescence Probe for Selective Detection of Cu2+" Sensors 24, no. 11: 3425. https://doi.org/10.3390/s24113425
APA StyleYu, C., Huang, J., Yang, M., & Zhang, J. (2024). Construction of Chitosan-Modified Naphthalimide Fluorescence Probe for Selective Detection of Cu2+. Sensors, 24(11), 3425. https://doi.org/10.3390/s24113425