Cam-Unet: Print-Cam Image Correction for Zero-Bit Fourier Image Watermarking
Abstract
:1. Introduction
- The first end-to-end learning-based method to directly rectify print-cam images. This network is trained to map the distorted images to their rectified states;
- An innovative methodology to synthesize print-cam images along with corresponding distortion maps, accurately simulating real-world printing and capturing conditions;
- Improvement of Fourier watermarking for the print-cam process through integration with Cam-Unet for image rectification. This fusion technique showcases superior performance compared to existing methods;
2. Related Works
3. Proposed Print-Cam Watermarking Method
3.1. Fourier Watermarking Method
3.1.1. Watermark Insertion
3.1.2. Watermark Detection
3.2. Print-Cam Perspective Correction
3.2.1. Cam-Unet Architecture
3.2.2. Dataset Preparation
3.2.3. Training Details
4. Experimental Results
4.1. Simulation Print-Cam Test
4.2. Real Print-Cam Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pouyanfar, S.; Yang, Y.; Chen, S.C.; Shyu, M.L.; Iyengar, S. Multimedia big data analytics: A survey. Acm Comput. Surv. (CSUR) 2018, 51, 1–34. [Google Scholar] [CrossRef]
- Sengupta, A.; Mohanty, S. Everything you Wanted to Know about Watermarking: From Paper Marks to Hardware Protection. IEEE Consum. Electron. Mag. 2016, 6, 83–91. [Google Scholar] [CrossRef]
- Agarwal, N.; Singh, A.K.; Singh, P.K. Survey of robust and imperceptible watermarking. Multimed. Tools Appl. 2019, 78, 8603–8633. [Google Scholar] [CrossRef]
- Gourrame, K.; Ros, F.; Douzi, H.; Harba, R.; Riad, R. Fourier Image Watermarking: Print-Cam Application. Electronics 2022, 11, 266. [Google Scholar] [CrossRef]
- Pramila, A.; Keskinarkaus, A.; Seppänen, T. Camera based watermark extraction-problems and examples. In Proceedings of the Finnish Signal Processing Symposium, Eskisehir, Turkey, 11–13 June 2007. [Google Scholar]
- Begum, M.; Uddin, M.S. Digital image watermarking techniques: A review. Information 2020, 11, 110. [Google Scholar] [CrossRef]
- Amrit, P.; Singh, A.K. Survey on watermarking methods in the artificial intelligence domain and beyond. Comput. Commun. 2022, 188, 52–65. [Google Scholar] [CrossRef]
- Muñoz-Ramirez, D.O.; Ponomaryov, V.; Reyes-Reyes, R.; Kyrychenko, V.; Pechenin, O.; Totsky, A. A robust watermarking scheme to JPEG compression for embedding a color watermark into digital images. In Proceedings of the 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kyiv, Ukraine, 24–27 May 2018; IEEE: New York, NY, USA, 2018; pp. 619–624. [Google Scholar]
- Zhou, N.R.; Hou, W.M.X.; Wen, R.H.; Zou, W.P. Imperceptible digital watermarking scheme in multiple transform domains. Multimed. Tools Appl. 2018, 77, 30251–30267. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, J.; Su, Y.; Wang, M.; Sun, X. Geometric correction code-based robust image watermarking. IET Image Process. 2023, 17, 3660–3669. [Google Scholar] [CrossRef]
- Licks, V.; Jordan, R. Geometric attacks on image watermarking systems. IEEE Multimed. 2005, 12, 68–78. [Google Scholar] [CrossRef]
- Riad, R.; Ros, F.; Harba, R.; Douzi, H.; El Hajji, M. Pre-processing the cover image before embedding improves the watermark detection rate. In Proceedings of the 2014 Second World Conference on Complex Systems (WCCS), Agadir, Morocco, 10–12 November 2014; IEEE: New York, NY, USA, 2014; pp. 705–709. [Google Scholar]
- Gourrame, K.; Douzi, H.; Harba, R.; Ros, F.; El Hajji, M.; Riad, R.; Amar, M. Robust print-cam image watermarking in fourier domain. In Proceedings of the Image and Signal Processing: 7th International Conference, ICISP 2016, Trois-Rivières, QC, Canada, 30 May–1 June 2016; Proceedings 7. Springer: Berlin/Heidelberg, Germany, 2016; pp. 356–365. [Google Scholar]
- Araghi, T.K.; Manaf, A.; Zamani, M.; Araghi, S.K. A survey on digital image watermarking techniques in spatial and transform domains. Int. J. Adv. Image Process. Tech. 2016, 3, 6–10. [Google Scholar]
- Alzahrani, A.; Memon, N.A. Blind and robust watermarking scheme in hybrid domain for copyright protection of medical images. IEEE Access 2021, 9, 113714–113734. [Google Scholar] [CrossRef]
- Abdullatif, M.; Zeki, A.M.; Chebil, J.; Gunawan, T.S. Properties of digital image watermarking. In Proceedings of the 2013 IEEE 9th International Colloquium on Signal Processing and Its Applications, Kuala Lumpur, Malaysia, 8–10 March 2013; IEEE: New York, NY, USA, 2013; pp. 235–240. [Google Scholar]
- Nakamura, T.; Katayama, A.; Yamamuro, M.; Sonehara, N. Fast watermark detection scheme for camera-equipped cellular phone. In Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia, College Park, MD, USA, 27–29 October 2004; pp. 101–108. [Google Scholar]
- Katayama, A.; Nakamura, T.; Yamamuro, M.; Sonehara, N. New high-speed frame detection method: Side trace algorithm (STA) for i-appli on cellular phones to detect watermarks. In Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia, College Park, MD, USA, 27–29 October 2004; pp. 109–116. [Google Scholar]
- Takeuchi, S.; Kunisa, A.; Tsujita, K.; Inoue, Y. Geometric distortion compensation of printed images containing imperceptible watermarks. In Proceedings of the 2005 Digest of Technical Papers. International Conference on Consumer Electronics, ICCE, Las Vegas, NV, USA, 8–12 January 2005; IEEE: New York, NY, USA, 2005; pp. 411–412. [Google Scholar]
- Kim, W.g.; Lee, S.H.; Seo, Y.s. Image fingerprinting scheme for print-and-capture model. In Proceedings of the Advances in Multimedia Information Processing-PCM 2006: 7th Pacific Rim Conference on Multimedia, Hangzhou, China, 2–4 November 2006; Proceedings 7. Springer: Berlin/Heidelberg, Germany, 2006; pp. 106–113. [Google Scholar]
- Liu, J.C.; Shieh, H.A. Toward a two-dimensional barcode with visual information using perceptual shaping watermarking in mobile applications. Opt. Eng. 2011, 50, 017002. [Google Scholar] [CrossRef]
- Pramila, A.; Keskinarkaus, A.; Seppänen, T. Watermark robustness in the print-cam process. In Proceedings of the IASTED Signal Processing, Pattern Recognition, and Applications (SPPRA 2008), Crete, Greece, 18–20 June 2008; pp. 60–65. [Google Scholar]
- Pramila, A.; Keskinarkaus, A.; Seppänen, T. Toward an interactive poster using digital watermarking and a mobile phone camera. Signal Image Video Process. 2012, 6, 211–222. [Google Scholar] [CrossRef]
- Thongkor, K.; Amornraksa, T. Digital image watermarking for photo authentication in Thai national ID card. In Proceedings of the 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, Thailand, 16–18 May 2012; IEEE: New York, NY, USA, 2012; pp. 1–4. [Google Scholar]
- Thongkor, K.; Amornraksa, T. Robust image watermarking for camera-captured image using image registration technique. In Proceedings of the 2014 14th International Symposium on Communications and Information Technologies (ISCIT), Incheon, Republic of Korea, 24–26 September 2014; IEEE: New York, NY, USA, 2014; pp. 479–483. [Google Scholar]
- Gourrame, K.; Douzi, H.; Harba, R.; Riad, R.; Ros, F.; Amar, M.; Elhajji, M. A zero-bit Fourier image watermarking for print-cam process. Multimed. Tools Appl. 2019, 78, 2621–2638. [Google Scholar] [CrossRef]
- Boujerfaoui, S.; Douzi, H.; Harba, R.; Gourrame, K. Robust Fourier Watermarking for Print-Cam Process using Convolutional Neural Networks. In Proceedings of the 2022 7th International Conference on Signal and Image Processing (ICSIP), Suzhou, China, 20–22 July 2022; IEEE: New York, NY, USA, 2022; pp. 347–351. [Google Scholar]
- Aloysius, N.; Geetha, M. A review on deep convolutional neural networks. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; IEEE: New York, NY, USA, 2017; pp. 0588–0592. [Google Scholar]
- Zhu, J.; Kaplan, R.; Johnson, J.; Fei-Fei, L. Hidden: Hiding data with deep networks. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 657–672. [Google Scholar]
- Hamamoto, I.; Kawamura, M. Neural watermarking method including an attack simulator against rotation and compression attacks. IEICE Trans. Inf. Syst. 2020, 103, 33–41. [Google Scholar] [CrossRef]
- Ahmadi, M.; Norouzi, A.; Karimi, N.; Samavi, S.; Emami, A. ReDMark: Framework for residual diffusion watermarking based on deep networks. Expert Syst. Appl. 2020, 146, 113157. [Google Scholar] [CrossRef]
- Tancik, M.; Mildenhall, B.; Ng, R. Stegastamp: Invisible hyperlinks in physical photographs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2117–2126. [Google Scholar]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341. [Google Scholar]
- Qin, C.; Li, X.; Zhang, Z.; Li, F.; Zhang, X.; Feng, G. Print-Camera Resistant Image Watermarking with Deep Noise Simulation and Constrained Learning. IEEE Trans. Multimed. 2023, 26, 2164–2177. [Google Scholar] [CrossRef]
- Zhong, X.; Huang, P.C.; Mastorakis, S.; Shih, F.Y. An automated and robust image watermarking scheme based on deep neural networks. IEEE Trans. Multimed. 2020, 23, 1951–1961. [Google Scholar] [CrossRef]
- Jia, J.; Gao, Z.; Chen, K.; Hu, M.; Min, X.; Zhai, G.; Yang, X. RIHOOP: Robust invisible hyperlinks in offline and online photographs. IEEE Trans. Cybern. 2020, 52, 7094–7106. [Google Scholar] [CrossRef]
- Liu, M. Automatic Localization and Detection Applicable to Robust Image Watermarking Resisting against Camera Shooting. arXiv 2023, arXiv:2304.13953. [Google Scholar]
- Boujerfaoui, S.; Riad, R.; Douzi, H.; Ros, F.; Harba, R. Image Watermarking between Conventional and Learning-Based Techniques: A Literature Review. Electronics 2022, 12, 74. [Google Scholar] [CrossRef]
- Poljicak, A.; Mandic, L.; Agic, D. Discrete Fourier transform–based watermarking method with an optimal implementation radius. J. Electron. Imaging 2011, 20, 033008. [Google Scholar] [CrossRef]
- Yan, Q.; Blum, R.S. Distributed signal detection under the Neyman-Pearson criterion. IEEE Trans. Inf. Theory 2001, 47, 1368–1377. [Google Scholar] [CrossRef]
- Miller, M.L.; Bloom, J.A. Computing the probability of false watermark detection. In Proceedings of the International Workshop on Information Hiding, Dresden, Germany, 29 September–1 October 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 146–158. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, Q.; Koltun, V. Photographic image synthesis with cascaded refinement networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1511–1520. [Google Scholar]
- Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang, W.; Webb, R. Learning from simulated and unsupervised images through adversarial training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2107–2116. [Google Scholar]
- Tremblay, J.; Prakash, A.; Acuna, D.; Brophy, M.; Jampani, V.; Anil, C.; To, T.; Cameracci, E.; Boochoon, S.; Birchfield, S. Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 969–977. [Google Scholar]
- Aberdeen. Psychological Image Collection at Stirling(PICS). 2012. Available online: http://pics.psych.stir.ac.uk (accessed on 23 January 2022).
Component | Number of Parameters (M) |
---|---|
Encoder 1 | 4.7 |
ASPP 1 | 0.9 |
Decoder 1 | 2.9 |
Encoder 2 | 1.1 |
ASPP 2 | 0.4 |
Decoder 2 | 3.6 |
Total training parameters. | 13.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boujerfaoui, S.; Douzi, H.; Harba, R.; Ros, F. Cam-Unet: Print-Cam Image Correction for Zero-Bit Fourier Image Watermarking. Sensors 2024, 24, 3400. https://doi.org/10.3390/s24113400
Boujerfaoui S, Douzi H, Harba R, Ros F. Cam-Unet: Print-Cam Image Correction for Zero-Bit Fourier Image Watermarking. Sensors. 2024; 24(11):3400. https://doi.org/10.3390/s24113400
Chicago/Turabian StyleBoujerfaoui, Said, Hassan Douzi, Rachid Harba, and Frédéric Ros. 2024. "Cam-Unet: Print-Cam Image Correction for Zero-Bit Fourier Image Watermarking" Sensors 24, no. 11: 3400. https://doi.org/10.3390/s24113400
APA StyleBoujerfaoui, S., Douzi, H., Harba, R., & Ros, F. (2024). Cam-Unet: Print-Cam Image Correction for Zero-Bit Fourier Image Watermarking. Sensors, 24(11), 3400. https://doi.org/10.3390/s24113400