A Velocity Stretch Reflex Threshold Based on Muscle–Tendon Unit Peak Acceleration to Detect Possible Occurrences of Spasticity during Gait in Children with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Protocol
- Ankle with the knee at 90° and 0° (positions P1 and P2) for Sol and Gas evaluation;
- Knee with the hip at 90° and 0° (positions P3 and P4) for Sem and Rf evaluation.
2.3. Data Analysis
- MaxAcc: the vmt at which the amt was maximal.
2.3.1. Passive Stretch Analysis
- The number of times the Tvmt was determined at a time before the mobilization had begun, i.e., pre-T0, where T0 defines the beginning of the stretch. These cases occurred when there was less than 30 ms between T0 and the EMG-Onset;
- The number of times the Tvmt was determined at a time after the occurrence of the catch, i.e., post-catch (determined as the maximal of the second derivative of the moment).
2.3.2. Gait Analysis
3. Results
3.1. Passive Stretch Analysis
3.2. Gait Analysis
4. Discussion
- Compensative gait adaptations in order to lower some muscles’ vmt under their Tvmt;
- Unsuitable motor schemes preventing walking at a vmt above Tvmt (e.g., weakness of the agonists preventing the antagonists from being stretched too quickly that can be coupled with a higher antagonist’s passive stiffness, making the stretch more difficult; compensation due to a disorder at another joint; impaired selective motor control);
- Tvmt value above normal gait vmt, meaning that, in this case, spasticity has no impact on gait despite being triggered during instrumented physical examination.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Butler, E.E.; Rose, J. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment. Front. Hum. Neurosci. 2017, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, L.; Molenaers, G.; Aertbeliën, E.; Van Campenhout, A.; Feys, H.; Nuttin, B.; Desloovere, K. Spasticity and Its Contribution to Hypertonia in Cerebral Palsy. BioMed Res. Int. 2015, 2015, 317047. [Google Scholar] [CrossRef] [PubMed]
- Sellier, E.; Platt, M.J.; Andersen, G.L.; Krägeloh-Mann, I.; De La Cruz, J.; Cans, C.; Surveillance of Cerebral Palsy Network. Decreasing Prevalence in Cerebral Palsy: A Multi-Site European Population-Based Study, 1980 to 2003. Dev. Med. Child Neurol. 2016, 58, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Lance, J.W. The Control of Muscle Tone, Reflexes, and Movernenk Robert Wartenbeg Lecture. Neurology 1980, 30, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- van den Noort, J.C.; Bar-On, L.; Aertbeliën, E.; Bonikowski, M.; Braendvik, S.M.; Broström, E.W.; Buizer, A.I.; Burridge, J.H.; van Campenhout, A.; Dan, B.; et al. European Consensus on the Concepts and Measurement of the Pathophysiological Neuromuscular Responses to Passive Muscle Stretch. Eur. J. Neurol. 2017, 24, 981-e38. [Google Scholar] [CrossRef]
- Boyd, R.N.; Graham, H.K. Objective Measurement of Clinical Findings in the Use of Botulinum Toxin Type A for the Management of Children with Cerebral Palsy. Eur. J. Neurol. 1999, 6, s23–s35. [Google Scholar] [CrossRef]
- Banky, M.; Williams, G.; Davey, R.; Tirosh, O. Inertia Sensors for Measuring Spasticity of the Ankle Plantarflexors Using the Modified Tardieu Scale—A Proof of Concept Study. Sensors 2022, 22, 5151. [Google Scholar] [CrossRef]
- Valadão, P.; Bar-On, L.; Cenni, F.; Piitulainen, H.; Avela, J.; Finni, T. Revising the Stretch Reflex Threshold Method to Measure Stretch Hyperreflexia in Cerebral Palsy. Front. Bioeng. Biotechnol. 2022, 10, 897852. [Google Scholar] [CrossRef]
- Arami, A.; Tagliamonte, N.L.; Tamburella, F.; Huang, H.-Y.; Molinari, M.; Burdet, E. A Simple Tool to Measure Spasticity in Spinal Cord Injury Subjects. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1590–1596. [Google Scholar]
- Bar-On, L.; Aertbeliën, E.; Wambacq, H.; Severijns, D.; Lambrecht, K.; Dan, B.; Huenaerts, C.; Bruyninckx, H.; Janssens, L.; Van Gestel, L.; et al. A Clinical Measurement to Quantify Spasticity in Children with Cerebral Palsy by Integration of Multidimensional Signals. Gait Posture 2013, 38, 141–147. [Google Scholar] [CrossRef]
- Wu, Y.-N.; Ren, Y.; Goldsmith, A.; Gaebler, D.; Liu, S.Q.; Zhang, L.-Q. Characterization of Spasticity in Cerebral Palsy: Dependence of Catch Angle on Velocity: Characterization of Spasticity in CP. Dev. Med. Child Neurol. 2010, 52, 563–569. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hvass Petersen, T.; Kirk, H.; Forman, C.; Svane, C.; Kofoed-Hansen, M.; Boesen, F.; Lorentzen, J. Spasticity in Adults with Cerebral Palsy and Multiple Sclerosis Measured by Objective Clinically Applicable Technique. Clin. Neurophysiol. 2018, 129, 2010–2021. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.; Arami, A. Quantitative Modeling of Spasticity for Clinical Assessment, Treatment and Rehabilitation. Sensors 2020, 20, 5046. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, L.; Molenaers, G.; Aertbeliën, E.; Monari, D.; Feys, H.; Desloovere, K. The Relation between Spasticity and Muscle Behavior during the Swing Phase of Gait in Children with Cerebral Palsy. Res. Dev. Disabil. 2014, 35, 3354–3364. [Google Scholar] [CrossRef] [PubMed]
- Burridge, J.; Wood, D.; Hermens, H.; Voerman, G.; Johnson, G.; Wijck, F.V.; Platz, T.; Gregoric, M.; Hitchcock, R.; Pandyan, A. Theoretical and Methodological Considerations in the Measurement of Spasticity. Disabil. Rehabil. 2005, 27, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Brunner, R. Improving Quality of Life for Individuals with Cerebral Palsy through Treatment of Gait Impairment: International Cerebral Palsy Function and Mobility Symposium. J. Child. Orthop. 2021, 15, 183–185. [Google Scholar] [CrossRef]
- Crenna, P. Spasticity and ‘Spastic’ Gait in Children with Cerebral Palsy. Neurosci. Biobehav. Rev. 1998, 22, 571–578. [Google Scholar] [CrossRef]
- van der Krogt, M.M.; Doorenbosch, C.A.M.; Becher, J.G.; Harlaar, J. Walking Speed Modifies Spasticity Effects in Gastrocnemius and Soleus in Cerebral Palsy Gait. Clin. Biomech. 2009, 24, 422–428. [Google Scholar] [CrossRef]
- Hodges, P.W.; Bui, B.H. A Comparison of Computer-Based Methods for the Determination of Onset of Muscle Contraction Using Electromyography. Electroencephalogr. Clin. Neurophysiol. 1996, 101, 511–519. [Google Scholar]
- Staude, G.; Flachenecker, C.; Daumer, M.; Wolf, W. Onset Detection in Surface Electromyographic Signals: A Systematic Comparison of Methods. EURASIP J. Adv. Signal Process. 2001, 2001, 867853. [Google Scholar] [CrossRef]
- Campanini, I.; Merlo, A.; Degola, P.; Merletti, R.; Vezzosi, G.; Farina, D. Effect of Electrode Location on EMG Signal Envelope in Leg Muscles during Gait. J. Electromyogr. Kinesiol. 2007, 17, 515–526. [Google Scholar] [CrossRef]
- Campanini, I.; Merlo, A.; Disselhorst-Klug, C.; Mesin, L.; Muceli, S.; Merletti, R. Fundamental Concepts of Bipolar and High-Density Surface EMG Understanding and Teaching for Clinical, Occupational, and Sport Applications: Origin, Detection, and Main Errors. Sensors 2022, 22, 4150. [Google Scholar] [CrossRef] [PubMed]
- Sloot, L.H.; Weide, G.; van der Krogt, M.M.; Desloovere, K.; Harlaar, J.; Buizer, A.I.; Bar-On, L. Applying Stretch to Evoke Hyperreflexia in Spasticity Testing: Velocity vs. Acceleration. Front. Bioeng. Biotechnol. 2021, 8, 591004. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.P.; Lamotte D’Incamps, B.; Zytnicki, D.; Ting, L.H. Force Encoding in Muscle Spindles during Stretch of Passive Muscle. PLoS Comput. Biol. 2017, 13, e1005767. [Google Scholar] [CrossRef]
- Finley, J.M.; Dhaher, Y.Y.; Perreault, E.J. Acceleration Dependence and Task-Specific Modulation of Short- and Medium-Latency Reflexes in the Ankle Extensors. Physiol. Rep. 2013, 1, e00051. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, S. The Acceleration Response of a Primary Muscle-Spindle Ending to Ramp Stretch of the Extrafusal Muscle. Experentia 1967, 23, 1026–1027. [Google Scholar] [CrossRef] [PubMed]
- Koussou, A.; Dumas, R.; Desailly, E. Common Modelling Assumptions Affect the Joint Moments Measured during Passive Joint Mobilizations. Sci. Rep. 2023, 13, 17782. [Google Scholar] [CrossRef] [PubMed]
- Desailly, E. Analyse Biomécanique 3D de la Marche de L’enfant Déficient Moteur: Modélisation Segmentaire et Modélisation Musculo-Squelettique. Ph.D. Thesis, University of Poitiers, Poitiers, France, 2008. [Google Scholar]
- Doriot, N.; Cheze, L. A Three-Dimensional Kinematic and Dynamic Study of the Lower Limb during the Stance Phase of Gait Using an Homogeneous Matrix Approach. IEEE Trans. Biomed. Eng. 2004, 51, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Schless, S.-H.; Desloovere, K.; Aertbeliën, E.; Molenaers, G.; Huenaerts, C.; Bar-On, L. The Intra- and Inter-Rater Reliability of an Instrumented Spasticity Assessment in Children with Cerebral Palsy. PLoS ONE 2015, 10, e0131011. [Google Scholar] [CrossRef]
- Lai, A.K.M.; Arnold, A.S.; Wakeling, J.M. Why Are Antagonist Muscles Co-Activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks. Ann. Biomed. Eng. 2017, 45, 2762–2774. [Google Scholar] [CrossRef]
- Modenese, L.; Barzan, M.; Carty, C.P. Dependency of Lower Limb Joint Reaction Forces on Femoral Version. Gait Posture 2021, 88, 318–321. [Google Scholar] [CrossRef]
- Staude, G.H. Precise Onset Detection of Human Motor Responses Using a Whitening Filter and the Log-Likelihood-Ratio Test. IEEE Trans. Biomed. Eng. 2001, 48, 1292–1305. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; Cholewicki, J.; Peter Reeves, N. The Effect of Background Muscle Activity on Computerized Detection of SEMG Onset and Offset. J. Biomech. 2007, 40, 3521–3526. [Google Scholar] [CrossRef] [PubMed]
- van der Helm, F.C.T.; Rozendaal, L.A. Musculoskeletal Systems with Intrinsic and Proprioceptive Feedback. In Biomechanics and Neural Control of Posture and Movement; Winters, J.M., Crago, P.E., Eds.; Springer: New York, NY, USA, 2000; pp. 164–174. ISBN 978-1-4612-7415-5. [Google Scholar]
- van der Krogt, M.M.; Bar-On, L.; Kindt, T.; Desloovere, K.; Harlaar, J. Neuro-Musculoskeletal Simulation of Instrumented Contracture and Spasticity Assessment in Children with Cerebral Palsy. J. NeuroEng. Rehabil. 2016, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhang, H.; Gu, Y.; Liu, H. Accurate EMG Onset Detection in Pathological, Weak and Noisy Myoelectric Signals. Biomed. Signal Process. Control 2017, 33, 306–315. [Google Scholar] [CrossRef]
- Corden, D.M.; Lippold, O.C.J.; Buchanan, K.; Norrington, C. Long-Latency Component of the Stretch Reflex in Human Muscle Is Not Mediated by Intramuscular Stretch Receptors. J. Neurophysiol. 2000, 84, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Geertsen, S.S.; Kirk, H.; Lorentzen, J.; Jorsal, M.; Johansson, C.B.; Nielsen, J.B. Impaired Gait Function in Adults with Cerebral Palsy Is Associated with Reduced Rapid Force Generation and Increased Passive Stiffness. Clin. Neurophysiol. 2015, 126, 2320–2329. [Google Scholar] [CrossRef] [PubMed]
- Kurtzer, I.L. Long-Latency Reflexes Account for Limb Biomechanics through Several Supraspinal Pathways. Front. Integr. Neurosci. 2015, 8, 99. [Google Scholar] [CrossRef]
- Willerslev-Olsen, M.; Andersen, J.B.; Sinkjaer, T.; Nielsen, J.B. Sensory Feedback to Ankle Plantar Flexors Is Not Exaggerated during Gait in Spastic Hemiplegic Children with Cerebral Palsy. J. Neurophysiol. 2014, 111, 746–754. [Google Scholar] [CrossRef]
- Granata, K.P.; Ikeda, A.J.; Abel, M.F. Electromechanical Delay and Reflex Response in Spastic Cerebral Palsy. Arch. Phys. Med. Rehabil. 2000, 81, 888–894. [Google Scholar] [CrossRef]
- van den Noort, J.C.; Scholtes, V.A.; Becher, J.G.; Harlaar, J. Evaluation of the Catch in Spasticity Assessment in Children with Cerebral Palsy. Arch. Phys. Med. Rehabil. 2010, 91, 615–623. [Google Scholar] [CrossRef]
- Lynn, B.-O.; Erwin, A.; Guy, M.; Herman, B.; Davide, M.; Ellen, J.; Anne, C.; Kaat, D. Comprehensive Quantification of the Spastic Catch in Children with Cerebral Palsy. Res. Dev. Disabil. 2013, 34, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Crotty, E.D.; Furlong, L.-A.M.; Hayes, K.; Harrison, A.J. Onset Detection in Surface Electromyographic Signals across Isometric Explosive and Ramped Contractions: A Comparison of Computer-Based Methods. Physiol. Meas. 2021, 42, 035010. [Google Scholar] [CrossRef] [PubMed]
- Grey, M.J.; Klinge, K.; Crone, C.; Lorentzen, J.; Biering-Sørensen, F.; Ravnborg, M.; Nielsen, J.B. Post-Activation Depression of Soleus Stretch Reflexes in Healthy and Spastic Humans. Exp. Brain Res. 2008, 185, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B.; Christensen, M.S.; Farmer, S.F.; Lorentzen, J. Spastic Movement Disorder: Should We Forget Hyperexcitable Stretch Reflexes and Start Talking about Inappropriate Prediction of Sensory Consequences of Movement? Exp. Brain Res. 2020, 238, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Turpin, N.A.; Feldman, A.G.; Levin, M.F. Stretch-Reflex Threshold Modulation during Active Elbow Movements in Post-Stroke Survivors with Spasticity. Clin. Neurophysiol. 2017, 128, 1891–1897. [Google Scholar] [CrossRef]
- Hodapp, M.; Klisch, C.; Mall, V.; Vry, J.; Berger, W.; Faist, M. Modulation of Soleus H-Reflexes during Gait in Children with Cerebral Palsy. J. Neurophysiol. 2007, 98, 3263–3268. [Google Scholar] [CrossRef]
- Baude, M.; Nielsen, J.B.; Gracies, J.-M. The Neurophysiology of Deforming Spastic Paresis: A Revised Taxonomy. Ann. Phys. Rehabil. Med. 2019, 62, 426–430. [Google Scholar] [CrossRef]
- Lynn, B.-O.; Aertbeliën, E.; Molenaers, G.; Desloovere, K. Muscle Activation Patterns When Passively Stretching Spastic Lower Limb Muscles of Children with Cerebral Palsy. PLoS ONE 2014, 9, e91759. [Google Scholar] [CrossRef]
- Falisse, A.; Bar-On, L.; Desloovere, K.; Jonkers, I.; De Groote, F. A Spasticity Model Based on Feedback from Muscle Force Explains Muscle Activity during Passive Stretches and Gait in Children with Cerebral Palsy. PLoS ONE 2018, 13, e0208811. [Google Scholar] [CrossRef]
- Tuzson, A.E.; Granata, K.P.; Abel, M.F. Spastic Velocity Threshold Constrains Functional Performance in Cerebral Palsy. Arch. Phys. Med. Rehabil. 2003, 84, 1363–1368. [Google Scholar] [CrossRef]
Subjects | Sol (n = 37) | Gas (n = 42) | Sem (n = 35) | Rf (n = 44) |
---|---|---|---|---|
Gender m/f | 11/4 | 10/6 | 9/5 | 9/6 |
Mean age (SD) | 13.4 (2.4) | 13.3 (2.4) | 13.3 (2.6) | 12.9 (2.3) |
GMFCS | I: 5 II: 8 III: 2 | I: 4 II: 9 III: 3 | I: 3 II: 9 III: 2 | I: 4 II: 8 III: 3 |
Mean MTS angle (SD) | −6.0 (13.5) | −15.6 (8.7) | 78.2 (11.3) | 72.6 (40.5) |
Onset-Visu | Onset-Auto | MaxAcc | ||||
---|---|---|---|---|---|---|
pre-T0 | Median delay [IQR] | pre-T0 | Median delay [IQR] | pre-T0 | Median delay [IQR] | |
Sol | 0 | 93.5 [51.5–117.0] | 3 | 76.5 [48.0–108.0] | 0 | 60.0 [40.0–90.0] |
Gas | 2 | 75.2 [55.9–104.6] | 4 | 77.0 [52.0–99.5] | 0 | 60.0 [40.0–80.0] |
Sem | 0 | 183.5 [132.5–205.3] | 3 | 175.0 [118.5–238.0] | 0 | 190.0 [140.0–250.0] |
Rf | 0 | 222.5 [173.3–274.0] | 1 | 197.0 [150.8–271.3] | 0 | 180.0 [140.0–232.5] |
Onset-Visu | Onset-Auto | MaxAcc | ||||
---|---|---|---|---|---|---|
pre-T0 | Median delay [IQR] | pre-T0 | Median delay [IQR] | pre-T0 | Median delay [IQR] | |
Sol | 0 | 93.5 [51.5–117.0] | 3 | 76.5 [48.0–108.0] | 0 | 60.0 [40.0–90.0] |
Gas | 2 | 75.2 [55.9–104.6] | 4 | 77.0 [52.0–99.5] | 0 | 60.0 [40.0–80.0] |
Sem | 0 | 183.5 [132.5–205.3] | 3 | 175.0 [118.5–238.0] | 0 | 190.0 [140.0–250.0] |
Rf | 0 | 222.5 [173.3–274.0] | 1 | 197.0 [150.8–271.3] | 0 | 180.0 [140.0–232.5] |
Tvmt | Tvmt Exceedances per Gait Cycle | % of Gait Trial Time with vmt > Tvmt | |||||||
---|---|---|---|---|---|---|---|---|---|
Onset-Visu | Onset-Auto | MaxAcc | Onset-Visu | Onset-Auto | MaxAcc | Onset-Visu | Onset-Auto | MaxAcc | |
Sol | 37.6 [25.9–66.8] | 32.9 [24.2–62.3] | 38.3 [26.6–53.8] | 0 [0–0.25] | 0 [0–1.00] | 0 [0–0.80] | 0 [0–0.5] | 0 [0–2.1] | 0 [0–2.6] |
Gas | 20.8 [14.1–31.0] | 31.8 [24.6–37.4] | 27.4 [22.5–32.1] | 0.67 [0–1.00] | 0 [0–1.00] | 0.25 [0–1.00] | 1.2 [0–8.1] | 0 [0–5.7] | 0.4 [0–3.5] |
Sem | 17.5 [10.8–24.4] | 17.2 [14.2–19.7] | 38.3 [27.9–42.8] | 1.00 [0.33–1.00] | 0.78 [0.38–1.00] | 1.00 [0–1.00] | 7.8 [3.0–12.0] | 6.6 [4.1–10.5] | 5.8 [0–9.1] |
Rf | 25.6 [19.6–31.2] | 22.1 [16.5–31.7] | 20.2 [16.4–25.2] | 0 [0–0.75] | 0.38 [0–1.00] | 0.25 [0–1.00] | 0 [0–1.8] | 0.6 [0–5.1] | 0.2 [0–6.5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koussou, A.; Dumas, R.; Desailly, E. A Velocity Stretch Reflex Threshold Based on Muscle–Tendon Unit Peak Acceleration to Detect Possible Occurrences of Spasticity during Gait in Children with Cerebral Palsy. Sensors 2024, 24, 41. https://doi.org/10.3390/s24010041
Koussou A, Dumas R, Desailly E. A Velocity Stretch Reflex Threshold Based on Muscle–Tendon Unit Peak Acceleration to Detect Possible Occurrences of Spasticity during Gait in Children with Cerebral Palsy. Sensors. 2024; 24(1):41. https://doi.org/10.3390/s24010041
Chicago/Turabian StyleKoussou, Axel, Raphaël Dumas, and Eric Desailly. 2024. "A Velocity Stretch Reflex Threshold Based on Muscle–Tendon Unit Peak Acceleration to Detect Possible Occurrences of Spasticity during Gait in Children with Cerebral Palsy" Sensors 24, no. 1: 41. https://doi.org/10.3390/s24010041
APA StyleKoussou, A., Dumas, R., & Desailly, E. (2024). A Velocity Stretch Reflex Threshold Based on Muscle–Tendon Unit Peak Acceleration to Detect Possible Occurrences of Spasticity during Gait in Children with Cerebral Palsy. Sensors, 24(1), 41. https://doi.org/10.3390/s24010041