RIS-Assisted Cooperative Time-Division Multiple Access
Abstract
:1. Introduction
Notations
2. RIS-Assisted Cooperative Time-Division Multiple Access
2.1. System Model
2.2. Beamforming Vector Design
2.3. Proposed Algorithm
2.4. Discussion of System Performance
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secrecy-Energy Efficient Hybrid Beamforming for Satellite-Terrestrial Integrated Networks. IEEE Trans. Commun. 2021, 69, 6345–6359. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Cola, T.D.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT with Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Wang, C.; Pang, M.; Cui, G.; Chang, X.; Jiang, F.; Yao, Y.; Wang, W. Joint Waveform Design and Multiuser Detection in Symbiotic Ambient Backscatter NOMA Systems. IEEE Internet Things J. 2023, 10, 19507–19517. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Hu, Y.; Li, D.; Wang, J.; Al-Dhahir, N. Pain without Gain: Destructive Beamforming from A Malicious RIS Perspective in IoT Networks. IEEE Internet Things J. 2023. early access. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G. Refracting RIS-aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Qamar, F.; Siddiqui, M.U.A.; Hindia, M.N.; Hassan, R.; Nguyen, Q.N. Issues, Challenges, and Research Trends in Spectrum Management: A Comprehensive Overview and New Vision for Designing 6G Networks. Electronics 2020, 9, 1416. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Chen, M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Netw. 2020, 34, 134–142. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The Road Towards 6G: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Beamforming Optimization for Wireless Network aided by Intelligent Reflecting Surface with Discrete Phase Shifts. IEEE Trans. Commun. 2020, 68, 1838–1851. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface aided Wireless Network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Wang, P.; Fang, J.; Yuan, X.; Chen, Z.; Li, H. Intelligent Reflecting Surface-Assisted Millimeter Wave Communications: Joint Active and Passive Precoding Design. IEEE Trans. Veh. Technol. 2020, 69, 14960–14973. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, L.; Huang, K.; You, L. On the Trade-Off between Energy Efficiency and Spectral Efficiency in RIS-Aided Multi-User MISO Downlink. Electronics 2021, 10, 1307. [Google Scholar] [CrossRef]
- Ma, S.; Li, J.; Bu, X.; An, J. Joint Diagnosis of RIS and BS for RIS-Aided Millimeter-Wave System. Electronics 2021, 10, 2556. [Google Scholar] [CrossRef]
- Peng, C.; Deng, H.; Xiao, H.; Qian, Y.; Zhang, W. Two-Stage Channel Estimation for Semi-Passive RIS-Assisted Millimeter Wave Systems. Sensors 2022, 22, 5908. [Google Scholar] [CrossRef] [PubMed]
- Drampalou, S.F.; Miridakis, N.I.; Leligou, H.C.; Karkazis, P.A. A Survey on Optimal Channel Estimation Methods for RIS-Aided Communication Systems. Signals 2023, 4, 208–234. [Google Scholar] [CrossRef]
- Wei, X.; Shen, D.; Dai, L. Channel Estimation for RIS assisted Wireless Communications—Part I: Fundamentals, Solutions, and Future Opportunities. IEEE Commun. Lett. 2021, 25, 1398–1402. [Google Scholar] [CrossRef]
- Wei, X.; Shen, D.; Dai, L. Channel Estimation for RIS assisted Wireless Communications—Part II: An improved Solution based on Double Structured Sparsity. IEEE Commun. Lett. 2021, 25, 1403–1407. [Google Scholar] [CrossRef]
- Lin, T.; Yu, X.; Zhu, Y.; Schober, R. Channel Estimation for IRS assisted Millimeter-Wave MIMO Systems: Sparsity-Inspired Approaches. IEEE Trans. Commun. 2022, 70, 4078–4092. [Google Scholar] [CrossRef]
- Viswanath, P.; Tse, D.N.C.; Laroia, R. Opportunistic Beamforming using Dumb Antennas. IEEE Trans. Inf. Theory 2002, 48, 1277–1294. [Google Scholar] [CrossRef]
- Asadi, A.; Mancuso, V. A Survey on Opportunistic Scheduling in Wireless Communications. IEEE Commun. Surv. Tutor. 2013, 15, 1671–1688. [Google Scholar] [CrossRef]
- Nadeem, Q.U.A.; Chaaban, A.; Debbah, M. Opportunistic Beamforming using an Intelligent Reflecting Surface without Instantaneous CSI. IEEE Wirel. Commun. Lett. 2021, 10, 146–150. [Google Scholar] [CrossRef]
- Darsena, D.; Verde, F. On the Capacity of Opportunistic Time-Sharing Downlink With a Reconfigurable Intelligent Surface. IEEE Commun. Lett. 2023, 27, 3093–3097. [Google Scholar] [CrossRef]
- Yashvanth, L.; Murthy, C.R. Performance Analysis of Intelligent Reflecting Surface Assisted Opportunistic Communications. IEEE Trans. Signal Process. 2023, 71, 2056–2070. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, M.; Saad, W.; Xu, W.; Bahaei, M.S.; Poor, H.V.; Cui, S. Energy-Efficient Wireless Communications With Distributed Reconfigurable Intelligent Surfaces. IEEE Trans. Wirel. Commun. 2022, 21, 665–679. [Google Scholar] [CrossRef]
Step 1. Initialization |
, a given random phase-shift diagonal matrix |
, , |
, where |
, where is associated with . |
for k = 1: K do |
using (2) and (9) |
if , then |
using (9) |
else |
using (9) |
end |
end |
Step 2. User pairing and Transmit Beamforming Vector Design |
for k = 1: do |
Index = 0, |
for t = : T do |
if then go to line 30 |
using (11) |
using (12) |
using (13) |
using (15) |
using (17), where is the null space of |
using (14) |
if , then |
, and |
end |
end |
and |
end |
Parameter | Value |
---|---|
Number of transmit antennas at BS, M | 4 |
Total number of UEs, K | 10 |
Total number of time slots, T | 10 |
Number of passive reflecting elements, N | 64 |
Distance between BS and RIS | 500 m |
Frequency band | 800 MHz |
Rician factor | 3 dB |
Power consumption at BS, | 30 dBm |
Power consumption at RIS | |
Required SINR, | 10 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, H.; Kwon, B. RIS-Assisted Cooperative Time-Division Multiple Access. Sensors 2024, 24, 178. https://doi.org/10.3390/s24010178
Son H, Kwon B. RIS-Assisted Cooperative Time-Division Multiple Access. Sensors. 2024; 24(1):178. https://doi.org/10.3390/s24010178
Chicago/Turabian StyleSon, Hyukmin, and Beom Kwon. 2024. "RIS-Assisted Cooperative Time-Division Multiple Access" Sensors 24, no. 1: 178. https://doi.org/10.3390/s24010178
APA StyleSon, H., & Kwon, B. (2024). RIS-Assisted Cooperative Time-Division Multiple Access. Sensors, 24(1), 178. https://doi.org/10.3390/s24010178