Multi-Transduction-Mechanism Technology, an Emerging Approach to Enhance Sensor Performance
Abstract
:1. Introduction
2. Fundamental Transduction Sensing Mechanisms
2.1. Piezoelectric Transduction
2.2. Piezoresistive Transduction
2.3. Capacitive Transduction
2.4. Electromagnetic Induction Transduction
2.5. Triboelectric Transduction
3. Multi-Transduction Sensing Mechanisms
3.1. Combined Piezoresistive–Piezoelectric Transduction
3.2. Combined Capacitive–Piezoresistive Transduction
3.3. Combined Capacitive–Piezoelectric Transduction
3.4. Hybrid Nanogenerators
3.4.1. Combined Triboelectric–Inductive Transduction
3.4.2. Combined Piezoelectric–Triboelectric Transduction
3.4.3. Combined Piezoelectric–Inductive Transduction
3.5. Summary of Combined Transduction Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, I.R. Sensors and Transducers, 3rd ed.; Newnes: London, UK, 2001; ISBN 9780080516998. [Google Scholar]
- Gong, S.; Zhang, B.; Zhang, J.; Lin Wang, Z.; Ren, K.; Gong, S.; Zhang, B.; Zhang, J.; Wang, Z.L.; Ren, K. Biocompatible Poly(Lactic Acid)-Based Hybrid Piezoelectric and Electret Nanogenerator for Electronic Skin Applications. Adv. Funct. Mater. 2020, 30, 1908724. [Google Scholar] [CrossRef]
- dos Santos, A.; Fortunato, E.; Martins, R.; Águas, H.; Igreja, R. Transduction Mechanisms, Micro-Structuring Techniques, and Applications of Electronic Skin Pressure Sensors: A Review of Recent Advances. Sensors 2020, 20, 4407. [Google Scholar] [CrossRef] [PubMed]
- Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable Pressure Sensors for Pulse Wave Monitoring. Adv. Mater. 2022, 34, 2109357. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, Y.; Ozioko, O.; Dahiya, R. Effect of Dielectric and Stiffness of Soft Material between the Electrodes of a Capacitive Pressure Sensor on Its Performance. In Proceedings of the FLEPS 2020—IEEE International Conference on Flexible and Printable Sensors and Systems, Manchester, UK, 16–19 August 2020. [Google Scholar] [CrossRef]
- Liu, L.; Ji, W.; Xing, Z.; Sun, X.; Chen, Y.; Du, Y.; Qin, F. A Dual-Frequency Piezoelectric Micromachined Ultrasound Transducer Array with Low Inter-Element Coupling Effects. J. Micromechanics Microengineering 2021, 31, 45005. [Google Scholar] [CrossRef]
- Maadi, M.; Ceroici, C.; Zemp, R.J. Dual-Frequency CMUT Arrays for Multiband Ultrasound Imaging Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021, 68, 2532–2542. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Critello, C.D.; Pullano, A.S. Theory, Technology and Applications of Piezoresistive Sensors: A Review. Sens. Actuators A Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Birjis, Y.; Swaminathan, S.; Nazemi, H.; Raj, G.C.A.; Munirathinam, P.; Abu-Libdeh, A.; Emadi, A. Piezoelectric Micromachined Ultrasonic Transducers (PMUTs): Performance Metrics, Advancements, and Applications. Sensors 2022, 22, 9151. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.L.; Mariello, M. Recent Advances on Hybrid Piezo-Triboelectric Bio-Nanogenerators: Materials, Architectures and Circuitry. Nanoenergy Adv. 2022, 2022, 64–109. [Google Scholar] [CrossRef]
- Ge, C.; Wang, Z.; Liu, Z.; Wu, T.; Wang, S.; Ren, X.; Chen, D.; Zhao, J.; Hu, P.; Zhang, J. A Capacitive and Piezoresistive Hybrid Sensor for Long-Distance Proximity and Wide-Range Force Detection in Human–Robot Collaboration. Adv. Intell. Syst. 2022, 4, 2100213. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Boyer, C.; Kalantar-Zadeh, K.; Peng, S.; Chu, D.; Wang, C.H. Recent Developments of Hybrid Piezo–Triboelectric Nanogenerators for Flexible Sensors and Energy Harvesters. Nanoscale Adv. 2021, 3, 5465–5486. [Google Scholar] [CrossRef]
- Sberveglieri, G.; Genzardi, D.; Greco, G.; Nunez-Carmona, E.; Pezzottini, S.; Sberveglieri, V. The Electronic Nose: Review on Sensor Arrays and Future Perspectives. Chem. Eng. Trans. 2022, 95, 265–270. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Lee, Y.; Lee, H.S.; Ko, H. Nanomaterials: Fingertip Skin-Inspired Microstructured Ferroelectric Skins Discriminate Static/Dynamic Pressure and Temperature Stimuli. Sci. Adv. 2015, 1, e1500661. [Google Scholar] [CrossRef]
- Rovisco, A.; Dos Santos, A.; Cramer, T.; Martins, J.; Branquinho, R.; Águas, H.; Fraboni, B.; Fortunato, E.; Martins, R.; Igreja, R.; et al. Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3Nanowires through Microstructuration. ACS Appl. Mater. Interfaces 2020, 12, 18421–18430. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Kan, J.W.; Yu, X.C.; Wang, S.Y.; Ma, J.J.; Cao, Z.X. Sensitivity Enhancement of Piezoelectric Force Sensors by Using Multiple Piezoelectric Effects. AIP Adv. 2016, 6, 75320. [Google Scholar] [CrossRef]
- Winter, P.M.; Lanza, G.M.; Wickline, S.A.; Madou, M.; Wang, C.; Deotare, P.B.; Loncar, M.; Yap, Y.K.; Rose, J.; Auffan, M.; et al. Piezoresistivity. In Encyclopedia of Nanotechnology; Springer: Dordrecht, The Netherlands, 2012; pp. 2111–2117. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H.; Wu, H.; Ma, S.; Ren, L.; Liang, Y.; Liu, C.; Han, Z. Bioinspired Flexible Piezoresistive Sensor for High-Sensitivity Detection of Broad Pressure Range. Bio-Des. Manuf. 2022, 6, 243–254. [Google Scholar] [CrossRef]
- Li, J.; Wu, T.; Jiang, H.; Chen, Y.; Yang, Q. Ultrasensitive Hierarchical Piezoresistive Pressure Sensor for Wide-Range Pressure Detection. Adv. Intell. Syst. 2021, 3, 2100070. [Google Scholar] [CrossRef]
- Rivadeneyra, A.; López-Villanueva, J.A. Recent Advances in Printed Capacitive Sensors. Micromachines 2020, 11, 367. [Google Scholar] [CrossRef]
- Masihi, S.; Panahi, M.; Maddipatla, D.; Hanson, A.J.; Bose, A.K.; Hajian, S.; Palaniappan, V.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. Highly Sensitive Porous PDMS-Based Capacitive Pressure Sensors Fabricated on Fabric Platform for Wearable Applications. ACS Sens. 2021, 6, 938–949. [Google Scholar] [CrossRef]
- Ullah, H.; Wahab, M.A.; Will, G.; Karim, M.R.; Pan, T.; Gao, M.; Lai, D.; Lin, Y.; Miraz, M.H. Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. Biosensors 2022, 12, 630. [Google Scholar] [CrossRef]
- McCoul, D.; Hu, W.; Gao, M.; Mehta, V.; Pei, Q.; McCoul, D.; Hu, W.; Gao, M.; Mehta, V.; Pei, Q. Recent Advances in Stretchable and Transparent Electronic Materials. Adv. Electron. Mater. 2016, 2, 1500407. [Google Scholar] [CrossRef]
- Pagoli, A.; Chapelle, F.; Corrales-Ramon, J.A.; Mezouar, Y.; Lapusta, Y. Large-Area and Low-Cost Force/Tactile Capacitive Sensor for Soft Robotic Applications. Sensors 2022, 22, 4083. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Oh, G.Y.; Lee, K.I.; Yang, Y.J.; Ko, J.B.; Kim, Y.W.; Hong, Y.S. A Highly Sensitive and Flexible Capacitive Pressure Sensor Based on Alignment Airgap Dielectric. Sensors 2022, 22, 7390. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Liao, S.C.; Cheng, C.L.; Wen, J.H.; Hsieh, H.S.; Lai, C.H.; Fang, W. Wireless Magnetostrictive Type Inductive Sensing CMOS-MEMS Pressure Sensors. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; pp. 218–221. [Google Scholar] [CrossRef]
- Kinsler, P. Faraday’s Law and Magnetic Induction: Cause and Effect, Experiment and Theory. Physics 2020, 2, 150–163. [Google Scholar] [CrossRef]
- Liu, S.; Xu, H.; Xu, D.; Xiong, B. Modelling of Resonant MEMS Magnetic Field Sensor with Electromagnetic Induction Sensing. Solid. State Electron. 2017, 132, 91–98. [Google Scholar] [CrossRef]
- Liang, X.; Chen, H.; Sun, N.X. Magnetoelectric Materials and Devices. APL Mater. 2021, 9, 41114. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, Z.; Zhang, S.; Mao, Z.; Shen, Y.; Chu, Z. Review of Magnetoelectric Sensors. Actuators 2021, 10, 109. [Google Scholar] [CrossRef]
- Mao, Q.; Wu, J.; Hu, Z.; Xu, Y.; Du, Y.; Hao, Y.; Guan, M.; Wang, C.; Wang, Z.; Zhou, Z.; et al. Magnetoelectric Devices Based on Magnetoelectric Bulk Composites. J. Mater. Chem. C. Mater. 2021, 9, 5594–5614. [Google Scholar] [CrossRef]
- Bichurin, M.; Sokolov, O.; Ivanov, S.; Leontiev, V.; Petrov, D.; Semenov, G.; Lobekin, V. Physics of Composites for Low-Frequency Magnetoelectric Devices. Sensors 2022, 22, 4818. [Google Scholar] [CrossRef]
- Byberi, A.; Amineh, R.K.; Ravan, M. Wearable Inductive Sensing of the Arm Joint: Comparison of Three Sensing Configurations. Magnetism 2022, 2, 195–210. [Google Scholar] [CrossRef]
- Moheimani, R.; Hosseini, P.; Mohammadi, S.; Dalir, H. Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications. C 2022, 8, 26. [Google Scholar] [CrossRef]
- Zhao, Z.; Lu, Y.; Mi, Y.; Meng, J.; Cao, X.; Wang, N. Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems. Micromachines 2022, 13, 1586. [Google Scholar] [CrossRef]
- Triboelectricity – MRSEC Education Group – UW–Madison. (n.d.). Available online: https://education.mrsec.wisc.edu/triboelectricity/ (accessed on 29 April 2023).
- Wang, Z.L.; Wang, A.C. On the Origin of Contact-Electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Can Triboelectric Nanogenerators Find Their Niche? (n.d.). Available online: https://cen.acs.org/materials/energy-storage/triboelectric-nanogenerators-find-niche/99/i18 (accessed on 29 April 2023).
- Zhang, R.; Olin, H. Material Choices for Triboelectric Nanogenerators: A Critical Review. Ecomat 2020, 2, e12062. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A.C.; Xu, C.; et al. Quantifying the Triboelectric Series. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, L.; Li, S.; Liu, D.; Li, Y.; Gao, Y.; Liu, Y.; Dai, Y.; Wang, J.; Wang, Z.L. Selection Rules of Triboelectric Materials for Direct-Current Triboelectric Nanogenerator. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, J.H.; Kim, J.K.; Jeong, U. Material Aspects of Triboelectric Energy Generation and Sensors. NPG Asia Mater. 2020, 12, 1–17. [Google Scholar] [CrossRef]
- Song, Z.; Yin, J.; Wang, Z.; Lu, C.; Yang, Z.; Zhao, Z.; Lin, Z.; Wang, J.; Wu, C.; Cheng, J.; et al. A Flexible Triboelectric Tactile Sensor for Simultaneous Material and Texture Recognition. Nano Energy 2022, 93, 106798. [Google Scholar] [CrossRef]
- Pu, X.; An, S.; Tang, Q.; Guo, H.; Hu, C. Wearable Triboelectric Sensors for Biomedical Monitoring and Human-Machine Interface. iScience 2021, 24, 102027. [Google Scholar] [CrossRef]
- Chen, X.; Xie, X.; Liu, Y.; Zhao, C.; Wen, M.; Wen, Z. Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators. Adv. Funct. Mater. 2020, 30, 2004673. [Google Scholar] [CrossRef]
- Ha, M.; Park, J.; Lee, Y.; Ko, H. Triboelectric Generators and Sensors for Self-Powered Wearable Electronics. ACS Nano 2022, 9, 3421–3427. [Google Scholar] [CrossRef]
- Wu, C.; Wang, A.C.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Godwinraj, D.; George, S.C. Recent Advancement in TENG Polymer Structures and Energy Efficient Charge Control Circuits. Adv. Ind. Eng. Polym. Res. 2021, 4, 1–8. [Google Scholar] [CrossRef]
- Sundararajan, A.D.D.; Pugazhenthi, R. Design of Dual Transduction-Based CMOS-MEMS Electronic Stethoscope. ECS Trans. 2022, 107, 20289–20297. [Google Scholar] [CrossRef]
- Sun, C.; Dai, F.; Jiang, S.; Liu, Y. A Novel Single-Element Dual-Frequency Ultrasound Transducer for Image-Guided Precision Medicine. In Proceedings of the IEEE International Ultrasonics Symposium, IUS, Washington, DC, USA, 6–9 September 2017. [Google Scholar] [CrossRef]
- Mariello, M.; Fachechi, L.; Guido, F.; De Vittorio, M.; Mariello, M.; Fachechi, L.; Guido, F.; De Vittorio, M. Conformal, Ultra-Thin Skin-Contact-Actuated Hybrid Piezo/Triboelectric Wearable Sensor Based on AlN and Parylene-Encapsulated Elastomeric Blend. Adv. Funct. Mater. 2021, 31, 2101047. [Google Scholar] [CrossRef]
- Kalinauskienė, E.; Razvadauskas, H.; Morse, D.J.; Maxey, G.E.; Naudžiūnas, A. A Comparison of Electronic and Traditional Stethoscopes in the Heart Auscultation of Obese Patients. Medicina (Kaunas) 2019, 55, 94. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Doll, J.C.; Pruitt, B.L. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity. J. Microelectromech Syst. 2010, 19, 137–148. [Google Scholar] [CrossRef]
- Kim, S.G.; Priya, S.; Kanno, I. Piezoelectric MEMS for Energy Harvesting. MRS Bull. 2012, 37, 1039–1050. [Google Scholar] [CrossRef]
- Rennoll, V.; McLane, I.; Emmanouilidou, D.; West, J.; Elhilali, M. Electronic Stethoscope Filtering Mimics the Perceived Sound Characteristics of Acoustic Stethoscope. IEEE J. Biomed. Health Inform. 2021, 25, 1542. [Google Scholar] [CrossRef]
- Zang, J.; Fan, Z.; Li, P.; Duan, X.; Wu, C.; Cui, D.; Xue, C. Design and Fabrication of High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Based on an AlN Thin Film. Micromachines 2022, 13, 1317. [Google Scholar] [CrossRef]
- Taalla, R.V.; Arefin, M.S.; Kaynak, A.; Kouzani, A.Z. A Review on Miniaturized Ultrasonic Wireless Power Transfer to Implantable Medical Devices. IEEE Access. 2019, 7, 2092–2106. [Google Scholar] [CrossRef]
- Sripadmanabhan Indira, S.; Aravind Vaithilingam, C.; Satya Prakash Oruganti, K.; Mohd, F.; Rahman, S. Nanomaterials Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges. Nanomaterials 2019, 9, 773. [Google Scholar] [CrossRef]
- Wang, X.; Yang, B.; Liu, J.; Zhu, Y.; Yang, C.; He, Q. A Flexible Triboelectric-Piezoelectric Hybrid Nanogenerator Based on P(VDF-TrFE) Nanofibers and PDMS/ MWCNT for Wearable Devices OPEN. Sci. Rep. 2016, 6, 36409. [Google Scholar] [CrossRef]
- Vidal, J.V.; Slabov, V.; Kholkin, A.L.; dos Santos, M.P.S. Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review. Nano-Micro Lett. 2021, 13, 1–58. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, J.; Yi, X.; Wu, H.; Wang, W. A Hybrid Micro Vibration Energy Harvester with Power Management Circuit. Microelectron. Eng. 2015, 131, 36–42. [Google Scholar] [CrossRef]
- Shao, J.; Willatzen, M.; Wang, Z.L. Theoretical Modeling of Triboelectric Nanogenerators (TENGs). J. Appl. Phys. 2020, 128, 111101. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical Systems of Triboelectric Nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef]
- Huang, P.; Wen, D.-L.; Qiu, Y.; Yang, M.-H.; Tu, C.; Zhong, H.-S.; Zhang, X.-S. Micromachines Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems. Micromachines 2021, 12, 158. [Google Scholar] [CrossRef]
- Wang, Z.L.; Lin, L.; Chen, J.; Niu, S.; Zi, Y. Triboelectric Nanogenerator: Single-Electrode Mode. Springer: Cham, Switzerland, 2016; pp. 91–107. [Google Scholar] [CrossRef]
- Feng, M.; Wu, Y.; Feng, Y.; Dong, Y.; Liu, Y.; Peng, J.; Wang, N.; Xu, S.; Wang, D. Highly Wearable, Machine-Washable, and Self-Cleaning Fabric-Based Triboelectric Nanogenerator for Wireless Drowning Sensors. Nano Energy 2022, 93, 106835. [Google Scholar] [CrossRef]
- Suo, G.; Yu, Y.; Zhang, Z.; Wang, S.; Zhao, P.; Li, J.; Wang, X. Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3 /Polydimethylsiloxane Composite Film. ACS Appl. Mater. Interfaces 2016, 8, 34335–34341. [Google Scholar] [CrossRef]
- Liu, J.; Yu, D.; Zheng, Z.; Huangfu, G.; Guo, Y. Lead-Free BiFeO3 Film on Glass Fiber Fabric: Wearable Hybrid Piezoelectric-Triboelectric Nanogenerator. Ceram. Int. 2021, 47, 3573–3579. [Google Scholar] [CrossRef]
- Han, M.; Zhang, X.; Liu, W.; Sun, X.; Peng, X.; Zhang, H. Low-Frequency Wide-Band Hybrid Energy Harvester Based on Piezoelectric and Triboelectric Mechanism. Sci. China Technol. Sci. 2013, 56, 1835–1841. [Google Scholar] [CrossRef]
- Cao, L.; Li, Z.; Guo, C.; Li, P.; Meng, X.; Wang, T. Design and Test of the MEMS Coupled Piezoelectric–Electromagnetic Energy Harvester. Int. J. Precis. Eng. Manuf. 2019, 20, 673–686. [Google Scholar] [CrossRef]
- Challa, V.R.; Prasad, M.G.; Fisher, F.T. A Coupled Piezoelectric–Electromagnetic Energy Harvesting Technique for Achieving Power Output through Damping Matching. Smart Mater. Struct. 2009, 18, 95029. [Google Scholar] [CrossRef]
- Xia, H.; Chen, R.; Ren, L. Analysis of Piezoelectric–Electromagnetic Hybrid Vibration Energy Harvester under Different Electrical Boundary Conditions. Sens. Actuators A Phys. 2015, 234, 87–98. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, J.; Cao, J.; Bian, L.; Li, Z.; Yuan, X.; Wang, Z.; Li, Q.; Dong, S.; Yu, Z.; et al. A PMNN-PZT Piezoceramic Based Magneto-Mechano-Electric Coupled Energy Harvester. Adv. Funct. Mater. 2022, 32, 2111140. [Google Scholar] [CrossRef]
- Shan, X.B.; Guan, S.W.; Liu, Z.S.; Xu, Z.L.; Xie, T. A New Energy Harvester Using a Piezoelectric and Suspension Electromagnetic Mechanism. J. Zhejiang Univ. Sci. A 2013, 14, 890–897. [Google Scholar] [CrossRef]
- Yao, M.; Liu, P.; Wang, H.; Pham, V.T. Nonlinear Dynamics and Power Generation on a New Bistable Piezoelectric-Electromagnetic Energy Harvester. Complexity 2020, 2020, 5681703. [Google Scholar] [CrossRef]
- Shan, X.; Xu, Z.; Song, R.; Xie, T. A New Mathematical Model for a Piezoelectric-Electromagnetic Hybrid Energy Harvester. Ferroelectrics 2013, 450, 57–65. [Google Scholar] [CrossRef]
Combined Transduction Mechanisms | Key Parameters | Effect on Performance | Reference (s) |
---|---|---|---|
Piezoresistive–Piezoelectric | Resistance , Voltage | Improved signal-to-noise ratio | [49] |
Capacitive–Piezoresistive Transduction | Capacitance , Resistance | Long-distance proximity, large-range force detection | [11] |
Capacitive–Piezoelectric (DFUT) | CMUT frequency , PMUT frequency | High resolution (), larger imaging depths () | [50] |
Triboelectric–Inductive | Charge , Separation distance between triboelectric layers | Harvest low-frequency energy in the range of [] | [44,65] |
Piezoelectric–Triboelectric | Voltage , Charge | Detection at low [] and medium [] pressure ranges, Increased sensitivity to in the medium pressure ranges. | [51] |
Piezoelectric–Inductive | Piezoelectric power , Electromagnetic power | Increased power to for energy harvesting | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elnemr, Y.E.; Abu-Libdeh, A.; Raj, G.C.A.; Birjis, Y.; Nazemi, H.; Munirathinam, P.; Emadi, A. Multi-Transduction-Mechanism Technology, an Emerging Approach to Enhance Sensor Performance. Sensors 2023, 23, 4457. https://doi.org/10.3390/s23094457
Elnemr YE, Abu-Libdeh A, Raj GCA, Birjis Y, Nazemi H, Munirathinam P, Emadi A. Multi-Transduction-Mechanism Technology, an Emerging Approach to Enhance Sensor Performance. Sensors. 2023; 23(9):4457. https://doi.org/10.3390/s23094457
Chicago/Turabian StyleElnemr, Youssef Ezzat, Aya Abu-Libdeh, Gian Carlo Antony Raj, Yumna Birjis, Haleh Nazemi, Pavithra Munirathinam, and Arezoo Emadi. 2023. "Multi-Transduction-Mechanism Technology, an Emerging Approach to Enhance Sensor Performance" Sensors 23, no. 9: 4457. https://doi.org/10.3390/s23094457