Prototype Optical Bionic Microphone with a Dual-Channel Mach–Zehnder Interferometric Transducer
Abstract
:1. Introduction
2. Methodology
3. Simulation of Characteristics of the Bionic Diaphragm
3.1. Rocking-Mode and Bending-Mode Resonance Frequencies of the Bionic Diaphragm
3.2. Directional Dependence of the Mechanical Sensitivity of the Bionic Diaphragm
4. Experimental
4.1. Fabrication Process of the Bionic MEMS Diaphragm
4.2. Construction of the Prototype Optical Bionic Microphone
4.3. Test Platform of the Prototype Optical Bionic Microphone
5. Results and Discussion
5.1. Frequency Response of the Prototype Optical Bionic Microphone
5.2. Comparison of the Response Behavior of the Two MZI Channels of the Prototype Optical Bionic Microphone
5.3. Directional Response of the Prototype Optical Bionic Microphone
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valin, J.; Michaud, F.; Rouat, J.; Letourneau, D. Robust sound source localization using a microphone array on a mobile robot. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 2, pp. 1228–1233. [Google Scholar]
- Song, K.; Liu, Q.; Wang, Q. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search. Sensors 2011, 11, 2129–2154. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Liang, W. Acoustic detection technology for gas pipeline leakage. Process Saf. Environ. Prot. 2013, 91, 253–261. [Google Scholar] [CrossRef]
- Sedunov, A.; Haddad, D.; Salloum, H.; Sutin, A.; Sedunov, N.; Yakubovskiy, A. Stevens Drone Detection Acoustic System and Experiments in Acoustics UAV Tracking. In Proceedings of the 2019 IEEE International Symposium on Technologies for Homeland Security (HST), Boston, MA, USA, 5–6 November 2019. [Google Scholar]
- Grzywiński, S. Important aspects of an acoustic location system designed to operate in marine environment. Appl. Acoust. 2021, 172, 107614. [Google Scholar] [CrossRef]
- Case, E.E.; Zelnio, A.M.; Rigling, B.D. Ieee In Low-Cost Acoustic Array for Small UAV Detection and Tracking. In Proceedings of the IEEE National Aerospace and Electronics Conference (NAECON 2008), Dayton, OH, USA, 16–18 July 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 110–113. [Google Scholar]
- Chang, X.; Yang, C.; Shi, X.; Li, P.; Shi, Z.; Chen, J. In Feature extracted doa estimation algorithm using acoustic array for drone surveillance. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; IEEE: Porto, Portugal, 2018; pp. 1–5. [Google Scholar]
- Chang, X.; Yang, C.; Wu, J.; Shi, X.; Shi, Z. A Surveillance System for Drone Localization and Tracking Using Acoustic Arrays. In Proceedings of the IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 8–11 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 573–577. [Google Scholar] [CrossRef]
- Yang, C.; Wu, Z.; Chang, X.; Shi, X.; Wo, J.; Shi, Z. In DOA estimation using amateur drones harmonic acoustic signals. In Proceedings of the 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 8–11 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 587–591. [Google Scholar]
- Zhong, D.; Yang, D.; Zhu, M. Improvement of sound source localization in a finite duct using beamforming methods. Appl. Acoust. 2016, 103, 37–46. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y. Microphone array signal processing. J. Acoust. Soc. Am. 2008, 125, 4097–4098. [Google Scholar]
- Cade, W. Acoustically Orienting Parasitoids: Fly Phonotaxis to Cricket Song. Science 1975, 190, 1312–1313. [Google Scholar] [CrossRef]
- Miles, R.N.; Robert, D.; Hoy, R.R. Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea. J. Acoust. Soc. Am. 1995, 98, 3059–3070. [Google Scholar] [CrossRef]
- Miles, R.; Tai, T.; Robert, D.; Hoy, R. A mechanical analysis of the novel ear of the parasitoid fly Ormia ochracea. In Diversity in Auditory Mechanics; World Scientific: Singapore, 1996. [Google Scholar]
- Muller, P.; Robert, D. A shot in the dark: The silent quest of a free-flying phonotactic fly. J. Exp. Biol. 2001, 204, 1039–1052. [Google Scholar] [CrossRef]
- Robert, D.; Miles, R.N.; Hoy, R.R. Directional hearing by mechanical coupling in the parasitoid fly Ormia ochracea. J. Comp. Physiol. A 1996, 179, 29–44. [Google Scholar] [CrossRef]
- Robert, D.; Miles, R.N.; Hoy, R.R. Tympanal mechanics in the parasitoid fly Ormia ochracea: Intertympanal coupling during mechanical vibration. J. Comp. Physiol. A 1998, 183, 443–452. [Google Scholar] [CrossRef]
- Robert, D.; Read, M.P.; Hoy, R.R. The tympanal hearing organ of the parasitoid fly Ormia ochracea (Diptera, Tachinidae, Ormiini). Cell Tissue Res. 1994, 275, 63–78. [Google Scholar] [CrossRef]
- Mason, A.C.; Oshinsky, M.L.; Hoy, R.R. Hyperacute directional hearing in a microscale auditory system. Nature 2001, 410, 686–690. [Google Scholar] [CrossRef]
- Liu, H.; Currano, L.; Gee, D.; Helms, T.; Yu, M. Understanding and mimicking the dual optimality of the fly ear. Sci. Rep. 2013, 3, 02489. [Google Scholar] [CrossRef]
- Liu, H.J.; Yu, M.; Zhang, X. Biomimetic optical directional microphone with structurally coupled diaphragms. Appl. Phys. Lett. 2008, 93, 26503–26617. [Google Scholar] [CrossRef]
- Touse, M.; Sinibaldi, J.; Karunasiri, G. MEMS directional sound sensor with simultaneous detection of two frequency bands. In Sensors; IEEE: Piscataway, NJ, USA, 2010; pp. 2422–2425. [Google Scholar] [CrossRef]
- Touse, M.; Sinibaldi, J.; Simsek, K.; Catterlin, J.; Harrison, S.; Karunasiri, G. Fabrication of a microelectromechanical directional sound sensor with electronic readout using comb fingers. Appl. Phys. Lett. 2010, 96, 173701. [Google Scholar] [CrossRef]
- Wilmott, D.; Alves, F.; Karunasiri, G. Bio-Inspired Miniature Direction Finding Acoustic Sensor. Sci. Rep. 2016, 6, 29957. [Google Scholar] [CrossRef]
- Miles, R.N.; Cui, W.; Su, Q.T.; Homentcovschi, D. A MEMS Low-Noise Sound Pressure Gradient Microphone with Capacitive Sensing. J. Microelectromech. Syst. 2014, 24, 241–248. [Google Scholar] [CrossRef]
- Bauer, R.; Zhang, Y.; Jackson, J.C.; Whitmer, W.M.; Brimijoin, W.O.; Akeroyd, M.; Uttamchandani, D.; Windmill, J.F.C. Housing influence on multi-band directional MEMS microphones inspired by Ormia ochracea. In Sensors; IEEE: Sheffield, UK, 2017. [Google Scholar] [CrossRef]
- Kuntzman, M.L.; Hall, N.A. Sound source localization inspired by the ears of the Ormia ochracea. Appl. Phys. Lett. 2014, 105, 033701. [Google Scholar] [CrossRef]
- Rahaman, A.; Ishfaque, A.; Jung, H.; Kim, B. Bio-Inspired Rectangular Shaped Piezoelectric MEMS Directional Microphone. IEEE Sens. J. 2018, 19, 88–96. [Google Scholar] [CrossRef]
- Rahaman, A.; Kim, B. Sound source localization by Ormia ochracea inspired low–noise piezoelectric MEMS directional microphone. Sci. Rep. 2020, 10, 9545. [Google Scholar] [CrossRef]
- Rahaman, A.; Kim, B. Ieee In Fly-Inspired Mems Directional Acoustic Sensor for Sound Source Direction. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII (TRANSDUCERS and EUROSENSORS), Berlin, Germany, 23–27 June 2019; pp. 905–908. [Google Scholar]
- Kuntzman, M.L.; Gloria Lee, J.; Hewa-Kasakarage, N.N.; Kim, D.; Hall, N.A. Micromachined piezoelectric microphones with in-plane directivity. Appl. Phys. Lett. 2013, 102, 054109. [Google Scholar] [CrossRef]
- Currano, L.J.; Liu, H.; Gee, D.; Yang, B.; Yu, M. In Microscale implementation of a bio-inspired acoustic localization device. In International Society for Optics and Photonics; SPIE: Bellingham, DC, USA, 2009; p. 73210B. [Google Scholar] [CrossRef]
- Lisiewski, A.P.; Liu, H.J.; Yu, M.; Currano, L.; Gee, D. Fly-ear inspired micro-sensor for sound source localization in two dimensions. J. Acoust. Soc. Am. 2011, 129, EL166–EL171. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Liu, X.; Zhang, M.; Gao, R.; Qi, Z.-M. Low-Frequency Bi-Directional Microphone Based on a Combination of Bionic MEMS Diaphragm and Fiber Acousto-Optic Transducer. IEEE Sens. J. 2021, 21, 14655–14665. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, G.; Ren, D.; Gao, R.; Qi, Z.-M.; Liang, X. An Optical MEMS Acoustic Sensor Based on Grating Interferometer. Sensors 2019, 19, 1503. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, V.; Kishor, D.K.; Sharma, A. Tapered optical fiber geometries and sensing applications based on Mach-Zehnder Interferometer: A review. Opt. Fiber Technol. 2020, 58, 102302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Cai, C.; Ji, K.; Hu, X.; Xiong, L.; Qi, Z.-m. Prototype Optical Bionic Microphone with a Dual-Channel Mach–Zehnder Interferometric Transducer. Sensors 2023, 23, 4416. https://doi.org/10.3390/s23094416
Liu X, Cai C, Ji K, Hu X, Xiong L, Qi Z-m. Prototype Optical Bionic Microphone with a Dual-Channel Mach–Zehnder Interferometric Transducer. Sensors. 2023; 23(9):4416. https://doi.org/10.3390/s23094416
Chicago/Turabian StyleLiu, Xin, Chen Cai, Kangning Ji, Xinyu Hu, Linsen Xiong, and Zhi-mei Qi. 2023. "Prototype Optical Bionic Microphone with a Dual-Channel Mach–Zehnder Interferometric Transducer" Sensors 23, no. 9: 4416. https://doi.org/10.3390/s23094416