Evaluation of Stem Rust Disease in Wheat Fields by Drone Hyperspectral Imaging
Abstract
:1. Introduction
2. Material and Methods
2.1. Field Experimental Design
2.2. The Features of Hyperspectral Camera and UAV
2.3. UAV Image Acquisition
2.4. Flight Plan
2.5. Image Preprocessing
2.6. Image Post-Processing and Spectral Extraction
2.7. Classification and Feature Selection Methods
2.8. Testing Wavelength
2.9. Spectral Vegetation Indices (SVIs)
Variance
3. Results and Discussion
3.1. Wavelength in Visible and Near-Infrared Range for Binary Classes (Healthy vs. Infected Plants)
3.2. Wavelength in Visible and Near-Infrared Range for Multiclass
3.3. Disease Sensitivity
3.3.1. The Sensitivity
3.3.2. Linear Correlation Coefficient
3.4. Classification Accuracy and Feature Selection
Multiclass Classification Results
3.5. Vegetation Indices
Classification Accuracy and Best SVIs Selection
3.6. Variance of Vegetation Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eversmeyer, M.G.; Kramer, C.L. Epidemiology of wheat leaf and stem rust in the central great plains of the USA. Annu. Rev. Phytopathol. 2000, 38, 491–513. [Google Scholar] [CrossRef] [PubMed]
- Aboukhaddour, R.; Fetch, T.M.; Brent, D.; Harding, M.W.; Beres, B.L.; Graf, R.J. Wheat diseases on the prairies: A Canadian story. Plant Pathol. 2020, 69, 418–432. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant Pathology Journal; Elsevier Academic Press Inc.: New York, NY, USA, 2005; Available online: https://www.elsevier.com/books/plant-pathology/agrios/978-0-08-047378-9 (accessed on 1 April 2023).
- Bashir, S.; Sharma, N. Remote Area Plant Disease Detection Using Image Processing. IOSR J. Electron. Commun. Eng. (IOSRJECE) 2012, 2, 31–34. [Google Scholar] [CrossRef]
- Horsfall, J.G.; Barratt, R.W. An Improved Grading System for Measuring Plant Diseases. Phytopathology 1945, 35, 655. [Google Scholar]
- Abdulridha, J.; Ehsani, R.; Abd-Elrahman, A.; Ampatzidis, Y. A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Comput. Electron. Agric. 2019, 156, 549–557. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, L.; Pu, R.; Loraamm, R.W.; Yang, G.; Wang, J. Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Comput. Electron. Agric. 2013, 100, 79–87. [Google Scholar] [CrossRef]
- Bohnenkamp, D.; Behmann, J.; Mahlein, A.-K. In-Field Detection of Yellow Rust in Wheat on the Ground Canopy and UAV Scale. Remote Sens. 2019, 11, 2495. [Google Scholar] [CrossRef]
- Bebronne, R.; Carlier, A.; Meurs, R.; Leemans, V.; Vermeulen, P.; Dumont, B.; Mercatoris, B. In-field proximal sensing of septoria tritici blotch, stripe rust and brown rust in winter wheat by means of reflectance and textural features from multispectral imagery. Biosyst. Eng. 2020, 197, 257–269. [Google Scholar] [CrossRef]
- Sharma, S.; Bhattarai, K. Progress in Developing Bacterial Spot Resistance in Tomato. Agronomy 2019, 9, 26. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Pargal, S.; Gupta, V.K.; Sinha, P.; Bhagat, S.; Saharan, M.; Singh, R.; Chattopadhyay, C. Assessing Wheat Yellow Rust Disease through Hyperspectral Remote Sensing. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-8, 1413–1416. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Ye, H.; Dong, Y.; Ma, H.; Ren, Y.; Ruan, C. Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images. Remote Sens. 2020, 12, 1419. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Dong, Y.; Shi, Y.; Ma, H.; Liu, L. Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages. Sensors 2019, 19, 35. [Google Scholar] [CrossRef]
- Huang, W.; Lamb, D.W.; Niu, Z.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187–197. [Google Scholar] [CrossRef]
- Ashourloo, D.; Mobasheri, M.R.; Huete, A. Developing Two Spectral Disease Indices for Detection of Wheat Leaf Rust (Pucciniatriticina). Remote Sens. 2014, 6, 4723–4740. [Google Scholar] [CrossRef]
- Wenjiang, H.; Muyi, H.; Liangyun, L.; Jihua, W.; Chunjiang, Z.; Jindi, W. Inversion of the Severity of Winter Wheat Yellow Rust Using Proper Hyper Spectral Index. CNKI: 2005. Available online: https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5&q=Inversion+of+the+severity+of+winter+wheat+yellow+rust+using+proper+hyper+spectral+index&btnG=# (accessed on 1 April 2023).
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.-K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Prot. 2017, 125, 5–20. [Google Scholar] [CrossRef]
- Edae, E.A.; Pumphrey, M.O.; Rouse, M.N. A Genome-Wide Association Study of Field and Seedling Response to Individual Stem Rust Pathogen Races Reveals Combinations of Race-Specific Genesin North American Spring Wheat. Front. Plant Sci. 2018, 9, 52. [Google Scholar] [CrossRef]
- Hundie, B.; Girma, B.; Tadesse, Z.; Edae, E.; Olivera, P.; Abera, E.H.; Bulbula, W.D.; Abeyo, B.; Badebo, A.; Cisar, G.; et al. Characterization of Ethiopian Wheat Germplasm for Resistance to Four Puccinia graminis f. sp. tritici Races Facilitated by Single-Race Nurseries. Plant Dis. 2019, 103, 2359–2366. [Google Scholar] [CrossRef]
- Gao, L.; Turner, M.K.; Chao, S.; Kolmer, J.; Anderson, J.A. Genome Wide Association Study of Seedling and Adult Plant Leaf Rust Resistance in Elite Spring Wheat Breeding Lines. PLoS ONE 2016, 11, e0148671. [Google Scholar] [CrossRef]
- Roelfs, A.P.; Huerta-Espino, J. Stem Rust and Leaf Rust Resistance in Durum Wheats. CIMMYT: 1992; Volume 968-6127-77-1, pp. 82–88. Available online: https://agris.fao.org/agris-search/search.do?recordID=QY9300011 (accessed on 1 April 2023).
- Sankaran, S.; Ehsani, R. Comparison of visible near infrared and mid-infrared spectroscopy for classification of Huanglongbing and citrus canker infected leaves. Agric. Eng. Int. CIGR 2013, 15, 75–79. [Google Scholar]
- Khaled, A.Y.; Aziz, S.A.; Bejo, S.K.; Nawi, N.M.; Abu Seman, I. Artificial intelligence for spectral classification to identify the basal stem rot disease in oil palm using dielectric spectroscopy measurements. Trop. Plant Pathol. 2021, 47, 140–151. [Google Scholar] [CrossRef]
- Guo, L.; Chehata, N.; Mallet, C.; Boukir, S. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J. Photogramm. Remote Sens. 2011, 66, 56–66. [Google Scholar] [CrossRef]
- Bucher, T.C.; Jiang, X.H.; Meyer, O.; Waitz, S.; Hertling, S.; Paulheim, H. Scikit-learn Pipelines Meet Knowledge Graphs-The Python kgextension Package. In Proceedings of the ESWC 2021 Poster and Demo Track, Hersonissos, Greece, 6 June 2021; Volume 12739, pp. 9–14. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E. Ration analysis of reflectance spectra (RARS)-An algorithm for the remote estimation concentration of chlorophyll-a, chlorophyll-b, and carotenoid soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Lukina, E.V.; Thomason, W.E.; Schepers, J.S. In-Season Prediction of Potential Grain Yield in Winter Wheat Using Canopy Reflectance. Agron. J. 2001, 93, 131–138. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Barnes, J.D.; Balaguer, L.; Manrique, E.; Elvira, S.; Davison, A.W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 1992, 32, 85–100. [Google Scholar] [CrossRef]
- Merton, R. Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index. In Proceedings of the JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998; NASA, Jet Propulsion Laboratory: Pasadena, CA, USA, 1998. Available online: https://aviris.jpl.nasa.gov/proceedings/workshops/98_docs/37.pdf (accessed on 1 April 2023).
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Hancock, D.W.; Dougherty, C.T. Relationships between Blue- and Red-based Vegetation Indices and Leaf Area and Yield of Alfalfa. Crop. Sci. 2007, 47, 2547–2556. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2018, 161, 280–290. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ampatzidis, Y.; Ehsani, R.; De Castro, A.I. Evaluating the performance of spectral features and multivariate analysis tools to detect laurel wilt disease and nutritional deficiency in avocado. Comput. Electron. Agric. 2018, 155, 203–211. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; Shafaq, Z.; Zaidi, S.M.H.; Kaifi, M.O.; Mahmood, Z.; Zaidi, S.A.R. Wheat rust disease detection techniques: A technical perspective. J. Plant Dis. Prot. 2022, 129, 489–504. [Google Scholar] [CrossRef]
- Khosrokhani, M.; Nasr, A. Applications of the remote sensing technology to detect and monitor the rust disease in the wheat–a literature review. Geocarto Int. 2022, 37, 1–27. [Google Scholar] [CrossRef]
- Abdulridha, J.; Batuman, O.; Ampatzidis, Y. UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning. Remote Sens. 2019, 11, 1373. [Google Scholar] [CrossRef]
- Mewes, T.; Franke, J.; Menz, G. Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precis. Agric. 2011, 12, 795–812. [Google Scholar] [CrossRef]
- Frank, O.; Mohr, M.; Maultzsch, J.; Thomsen, C.; Riaz, I.; Jalil, R.; Novoselov, K.S.; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; et al. Raman 2D-Band Splitting in Graphene: Theory and Experiment. Acs Nano 2011, 5, 2231–2239. [Google Scholar] [CrossRef]
- Mewes, T.; Franke, J.; Menz, G. Data Reduction of Hyperspectral Remote Sensing Data for Crop Stress Detection Using Different Band Selection Methods. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 1–5, pp. 1765–1768. [Google Scholar] [CrossRef]
- Archibald, R.; Fann, G. Feature Selection and Classification of Hyperspectral Images, with Support Vector Machines. IEEE Geosci. Remote Sens. Lett. 2007, 4, 674–677. [Google Scholar] [CrossRef]
- Park, K.; Hong, Y.K.; Kim, G.H.; Lee, J. Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network. Comput. Electron. Agric. 2018, 148, 179–187. [Google Scholar] [CrossRef]
- Franke, J.; Menz, G.; Oerke, E.C.; Rascher, U. Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants. In Remote Sensing for Agriculture, Ecosystems, and Hydrology VII; Manfred Owe, G.D.U., Ed.; SPIE-The International Society for Optical Engineering: Washington, DC, USA, 2005; Volume 5976, p. 59761D. [Google Scholar]
- Trotter, C.M.; Whitehead, D.; Pinkney, E.J. The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants with varying foliar nitrogen contents. Int. J. Remote Sens. 2002, 23, 1207–1212. [Google Scholar] [CrossRef]
- Penuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indexes associated with physiological-changes in nitrogen-limited and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Filella, I.; Zhang, C.; Seco, R.; Potosnak, M.; Guenther, A.; Karl, T.; Gamon, J.; Pallardy, S.; Gu, L.H.; Kim, S.; et al. A MODIS Photochemical Reflectance Index (PRI) as an Estimator of Isoprene Emissions in a Temperate Deciduous Forest. Remote Sens. 2018, 10, 557. [Google Scholar] [CrossRef]
- Sukhova, E.; Sukhov, V. Connection of the photochemical reflectance index (PRI) with the photosystem II quantum yield and nonphotochemical quenching can be dependent on variations of photosynthetic parameters among investigated plants: A meta-analysis. Remote Sens. 2018, 10, 771. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Piekarczyk, J.; Czernecki, B.; Ratajkiewicz, H. A random forest model for the classification of wheat and rye leaf rust symptoms based on pure spectra at leaf scale. J. Photochem. Photobiol. B Biol. 2021, 223, 112278. [Google Scholar] [CrossRef]
Vegetation Indices | Equations | References |
---|---|---|
Ratio Analysis of reflectance Spectral Chlorophyll-a (RARSa) | [27] | |
Ratio analysis of reflectance spectra (RARSc) | [27] | |
Pigment-specific simple ratio (PSSRa) | [28] | |
Normalized difference vegetation index 780 (NDVI 780) | [29] | |
Green NDVI (GNDVI) | [30] | |
Structure Insensitive Pigment Index (SIPI) | [31] | |
Normalized phaeophytinization index (NPQI) | [32] | |
Normalized Difference Vegetation Index (NDVI 780) | [29] | |
Red-Edge Vegetation Stress Index (RVS1) | [33] | |
Chlorophyll Green (Chl green) | )−1 | [34] |
Chlorophyll Index Red-Edge (CIrededge710) | [34] | |
Blue-wide dynamic range vegetation index | BWDRVI = | [35] |
Optimized Soil Adjusted Vegetation Index | OSAVI = ((1 + 0.16) × ((R800 − R670))/(R800 − R670 + 0.16)) | [36] |
Photochemical Reflectance Index (PRI) | [37] |
Categories | Best Bands Selection (nm) and the Weight of Each Band Inside the Parentheses |
---|---|
Class 1 (score 1–15) | 811.3 (99%), 690.2 (97%), 764.1 (95), 774.4 (94%), 739.5 (90%), 682 (90%) |
Class 2 (score 16–34) | 762.1 (100%), 749.7 (98%), 404.9 (96%), 421.3 (93%), 409 (90%), 415.1 (89%) |
Class 3 (score 35–70) | 860.6 (99%), 714.8 (97%), 776.4 (93%), 710.7(91%), 760 (90%), 782.6 (87%) |
Multi-classes (score 1–70) | 817.5 (99%), 612.2 (97%), 760 (96%), 725.1 (94%), 497.2 (91%), 706.6 (90%) |
Categories | Best Vegetation Indices and the Weight Values Inside the Parentheses |
---|---|
Class 1 (score 1–15) | GNDVI (100%), PRI (98%), RARSc (97%), Chl green (93%), SIPI (90%), RVSI (88%) |
Class 2 (score 16–34) | RVSI (98%), Chl green (96%), GNDVI (93%), NDVI 705 (91%), SIPI, RARSa (89%) |
Class 3 (score 35–70) | GNDVI (100%), CI rededge 710 (97%), RVSI (95%), OSAVI (92%), PSSRa (92%), NDVI 780 (88%) |
Binary classes | GNDVI (100%), PRI (98%), Chl green (96%), NPQI (94%), RVSI (90%), BWDRVI (88%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulridha, J.; Min, A.; Rouse, M.N.; Kianian, S.; Isler, V.; Yang, C. Evaluation of Stem Rust Disease in Wheat Fields by Drone Hyperspectral Imaging. Sensors 2023, 23, 4154. https://doi.org/10.3390/s23084154
Abdulridha J, Min A, Rouse MN, Kianian S, Isler V, Yang C. Evaluation of Stem Rust Disease in Wheat Fields by Drone Hyperspectral Imaging. Sensors. 2023; 23(8):4154. https://doi.org/10.3390/s23084154
Chicago/Turabian StyleAbdulridha, Jaafar, An Min, Matthew N. Rouse, Shahryar Kianian, Volkan Isler, and Ce Yang. 2023. "Evaluation of Stem Rust Disease in Wheat Fields by Drone Hyperspectral Imaging" Sensors 23, no. 8: 4154. https://doi.org/10.3390/s23084154
APA StyleAbdulridha, J., Min, A., Rouse, M. N., Kianian, S., Isler, V., & Yang, C. (2023). Evaluation of Stem Rust Disease in Wheat Fields by Drone Hyperspectral Imaging. Sensors, 23(8), 4154. https://doi.org/10.3390/s23084154