Exploiting Cooperative Downlink NOMA in D2D Communications
Abstract
:1. Introduction
- We investigate and propose a BCD-NOMA transmission strategy that uses cooperative downlink NOMA, allowing users to transmit data to the shared relay and D2D device in tandem and transfer their decoded signal at the relay in parallel as well to their respective destination nodes.
- We derive the analytical expressions for the OP, EC, and ergodic sum capacity (ESC) under both perfect SIC (pSIC) and imperfect SIC (ipSIC) scenarios and verify them with the simulation results.
- We verify the effectiveness of the BCD-NOMA scheme in terms of OP, ESC and average energy efficiency through simulations and mathematical analysis over schemes such as orthogonal multiple access (OMA), cooperative NOMA with OMA (CNOMA-OMA) and other conventional schemes.
2. System Model
2.1. Phase-1 ()
2.2. Phase-2 ()
2.3. Phase-3 ()
3. Outage Probability Analysis
3.1. Outage Probability of Node Associated with the Symbol
- cannot decode the symbol in phase-1.
- R cannot decode the symbol in phase-1.
- cannot decode the downlink message of transmitted from R in phase-3.
- cannot decode the downlink message of transmitted from R in phase-3.
3.2. Outage Probability of Node Associated with the Symbol
- cannot decode the symbol in phase-2.
- R cannot decode the symbol in phase-2.
- cannot decode the downlink message of transmitted from R in phase-3.
3.3. Outage Probability of D2D Message Associated with the Symbol
3.4. Outage Probability of D2D Message Associated with the Symbol
4. Ergodic Capacity Analysis
4.1. Achievable Rate of Node Associated with the Symbol
4.2. Achievable Rate of Node Associated with the Symbol
4.3. Achievable Rate of D2D Message Associated with the Symbol
4.4. Achievable Rate of D2D Message Associated with the Symbol
4.5. ESC of the BCD-NOMA System
5. Results and Discussions
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The road towards 6G: A comprehensive survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Ni, W.; Liu, Y.; Eldar, Y.C.; Yang, Z.; Tian, H. STAR-RIS Integrated Nonorthogonal Multiple Access and Over-the-Air Federated Learning: Framework, Analysis, and Optimization. IEEE Internet Things J. 2022, 9, 17136–17156. [Google Scholar] [CrossRef]
- Li, K.; Cui, Y.; Li, W.; Lv, T.; Yuan, X.; Li, S.; Ni, W.; Simsek, M.; Dressler, F. When Internet of Things meets Metaverse: Convergence of Physical and Cyber Worlds. arXiv 2022, arXiv:2208.13501. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Mu, X.; Ding, Z.; Schober, R.; Al-Dhahir, N.; Hossain, E.; Shen, X. Evolution of NOMA toward next generation multiple access (NGMA) for 6G. IEEE J. Sel. Areas Commun. 2022, 40, 1037–1071. [Google Scholar] [CrossRef]
- Xiao, C.; Zeng, J.; Ni, W.; Su, X.; Liu, R.P.; Lv, T.; Wang, J. Downlink MIMO-NOMA for ultra-reliable low-latency communications. IEEE J. Sel. Areas Commun. 2019, 37, 780–794. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, Y.; Li, S.; Wu, D.; Wang, B. Optimal resource allocation for NOMA-TDMA scheme with α-fairness in industrial internet of things. Sensors 2018, 18, 1572. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Al-Obiedollah, H.; Cumanan, K.; Zhang, M.; Tang, J.; Wang, W.; Dobre, O.A. Resource allocation technique for hybrid TDMA-NOMA system with opportunistic time assignment. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Choi, J. On the power allocation for a practical multiuser superposition scheme in NOMA systems. IEEE Commun. Lett. 2016, 20, 438–441. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Abdallah, A.; Mansour, M.M.; Alouini, M.S.; Al-Naffouri, T.Y. Terahertz-band MIMO-NOMA: Adaptive superposition coding and subspace detection. IEEE Open J. Commun. Soc. 2021, 2, 2628–2644. [Google Scholar] [CrossRef]
- Rauniyar, A.; Engelstad, P.; Østerbø, O.N. RF energy harvesting and information transmission based on NOMA for wireless powered IoT relay systems. Sensors 2018, 18, 3254. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yi, W.; Ding, Z.; Liu, X.; Dobre, O.A.; Al-Dhahir, N. Developing NOMA to next generation multiple access (NGMA): Future vision and research opportunities. IEEE Wirel. Commun. 2022, 29, 120–127. [Google Scholar] [CrossRef]
- Xia, B.; Wang, J.; Xiao, K.; Gao, Y.; Yao, Y.; Ma, S. Outage performance analysis for the advanced SIC receiver in wireless NOMA systems. IEEE Trans. Veh. Technol. 2018, 67, 6711–6715. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, F.; Cheng, J.; Long, K.; Wang, W.; Leung, V.C. Energy-efficient resource allocation in NOMA heterogeneous networks. IEEE Wirel. Commun. 2018, 25, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Rauniyar, A.; Østerbø, O.N.; Håkegård, J.E.; Engelstad, P.E. Secrecy Performance Analysis of Cooperative Nonorthogonal Multiple Access in IoT Networks. IEEE Sensors J. 2022, 22, 19030–19045. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Z.; Kim, K.J.; Kwak, K.S.; Poor, H.V. Decode-and-forward relaying for cooperative NOMA systems with direct links. IEEE Trans. Wirel. Commun. 2018, 17, 8077–8093. [Google Scholar] [CrossRef] [Green Version]
- Zeng, M.; Hao, W.; Dobre, O.A.; Ding, Z. Cooperative NOMA: State of the art, key techniques, and open challenges. IEEE Netw. 2020, 34, 205–211. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, I.H.; Lee, J. Capacity scaling for D2D aided cooperative relaying systems using NOMA. IEEE Wirel. Commun. Lett. 2017, 7, 42–45. [Google Scholar] [CrossRef]
- Zou, L.; Chen, J.; Lv, L.; He, B. Capacity enhancement of D2D aided coordinated direct and relay transmission using NOMA. IEEE Commun. Lett. 2020, 24, 2128–2132. [Google Scholar] [CrossRef]
- Kai, C.; Wu, Y.; Peng, M.; Huang, W. Joint uplink and downlink resource allocation for NOMA-enabled D2D communications. IEEE Wirel. Commun. Lett. 2021, 10, 1247–1251. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, G.; Li, B.; Jia, S. Performance of D2D aided uplink coordinated direct and relay transmission using NOMA. IEEE Access 2019, 7, 151090–151102. [Google Scholar] [CrossRef]
- Budhiraja, I.; Kumar, N.; Tyagi, S.; Tanwar, S.; Guizani, M. SWIPT-enabled D2D communication underlaying NOMA-based cellular networks in imperfect CSI. IEEE Trans. Veh. Technol. 2021, 70, 692–699. [Google Scholar] [CrossRef]
- Cheng, Y.; Liang, C.; Chen, Q.; Yu, F.R. Energy-efficient D2D-assisted computation offloading in NOMA-enabled cognitive networks. IEEE Trans. Veh. Technol. 2021, 70, 13441–13446. [Google Scholar] [CrossRef]
- Budhiraja, I.; Tyagi, S.; Tanwar, S.; Kumar, N.; Rodrigues, J.J. DIYA: Tactile internet driven delay assessment NOMA-based scheme for D2D communication. IEEE Trans. Ind. Informatics 2019, 15, 6354–6366. [Google Scholar] [CrossRef]
- Kader, M.F.; Islam, S.R.; Dobre, O.A. Simultaneous cellular and D2D communications exploiting cooperative uplink NOMA. IEEE Commun. Lett. 2021, 25, 1848–1852. [Google Scholar] [CrossRef]
- Kader, M.F.; Shahab, M.B.; Shin, S.Y. Exploiting non-orthogonal multiple access in cooperative relay sharing. IEEE Commun. Lett. 2017, 21, 1159–1162. [Google Scholar] [CrossRef]
- Alemaishat, S.; Saraereh, O.A.; Khan, I.; Choi, B.J. An efficient resource allocation algorithm for D2D communications based on NOMA. IEEE Access 2019, 7, 120238–120247. [Google Scholar] [CrossRef]
- Yu, S.; Khan, W.U.; Zhang, X.; Liu, J. Optimal power allocation for NOMA-enabled D2D communication with imperfect SIC decoding. Phys. Commun. 2021, 46, 101296. [Google Scholar] [CrossRef]
- Le, M.; Pham, Q.V.; Kim, H.C.; Hwang, W.J. Enhanced resource allocation in D2D communications with NOMA and unlicensed spectrum. IEEE Syst. J. 2022, 16, 2856–2866. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Chai, K.K.; Chen, Y.; Elkashlan, M. Joint Subchannel and Power Allocation for NOMA Enhanced D2D Communications. IEEE Trans. Commun. 2017, 65, 5081–5094. [Google Scholar] [CrossRef]
- Rauniyar, A.; Engelstad, P.E.; Østerbø, O.N. On the performance of bidirectional NOMA-SWIPT enabled iot relay networks. IEEE Sensors J. 2020, 21, 2299–2315. [Google Scholar] [CrossRef]
- Chrysologou, A.P.; Chatzidiamantis, N.D.; Karagiannidis, G.K. Cooperative Uplink NOMA in D2D Communications. IEEE Commun. Lett. 2022, 26, 2567–2571. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, S.; Tang, W. Performance analysis of hybrid cellular and bidirectional device-to-device cooperative NOMA communication systems. IEEE Trans. Veh. Technol. 2021, 70, 10420–10435. [Google Scholar] [CrossRef]
- Men, J.; Ge, J.; Zhang, C. Performance analysis of nonorthogonal multiple access for relaying networks over Nakagami-m fading channels. IEEE Trans. Veh. Technol. 2016, 66, 1200–1208. [Google Scholar] [CrossRef]
- Uddin, M.B.; Kader, M.F.; Shin, S.Y. Uplink cooperative diversity using power-domain nonorthogonal multiple access. Trans. Emerg. Telecommun. Technol. 2019, 30, e3678. [Google Scholar] [CrossRef]
- Wei, Z.; Dai, L.; Ng, D.W.K.; Yuan, J. Performance analysis of a hybrid downlink-uplink cooperative NOMA scheme. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; IEEE: New York, NY, USA, 2017; pp. 1–7. [Google Scholar]
- Kader, M.F.; Shin, S.Y. Coordinated direct and relay transmission using uplink NOMA. IEEE Wirel. Commun. Lett. 2017, 7, 400–403. [Google Scholar] [CrossRef]
- Fang, Z.; Hu, J.; Lu, Y.; Ni, W. Three-user cooperative NOMA transmission. IEEE Wirel. Commun. Lett. 2019, 9, 465–469. [Google Scholar] [CrossRef]
- Yue, X.; Liu, Y.; Kang, S.; Nallanathan, A.; Ding, Z. Exploiting full/half-duplex user relaying in NOMA systems. IEEE Trans. Commun. 2017, 66, 560–575. [Google Scholar] [CrossRef] [Green Version]
Parameter | Symbol | Values |
---|---|---|
Distance between and R | 0.25 | |
Distance between and R | 0.50 | |
Distance between R and | 0.50 | |
Distance between R and | 0.25 | |
Distance between and | 0.20 | |
Path Loss Exponent | v | 4 |
Power Allocation Factor for NOMA | 0.7 | |
Power Allocation Factor for NOMA | 0.3 | |
Power Allocation Factor for NOMA | 0.8 | |
Power Allocation Factor for NOMA | 0.2 | |
Power Allocation Factor for NOMA | 0.7 | |
Power Allocation Factor for NOMA | 0.3 | |
Residual Interfering Signal | , , | |
Data Rate | 0.50 bps/Hz | |
Data Rate | 0.70 bps/Hz | |
D2D Data Rate | 1.65 bps/Hz | |
D2D Data Rate | 1.75 bps/Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauniyar, A.; Østerbø, O.N.; Håkegård, J.E.; Engelstad, P. Exploiting Cooperative Downlink NOMA in D2D Communications. Sensors 2023, 23, 3958. https://doi.org/10.3390/s23083958
Rauniyar A, Østerbø ON, Håkegård JE, Engelstad P. Exploiting Cooperative Downlink NOMA in D2D Communications. Sensors. 2023; 23(8):3958. https://doi.org/10.3390/s23083958
Chicago/Turabian StyleRauniyar, Ashish, Olav N. Østerbø, Jan Erik Håkegård, and Paal Engelstad. 2023. "Exploiting Cooperative Downlink NOMA in D2D Communications" Sensors 23, no. 8: 3958. https://doi.org/10.3390/s23083958
APA StyleRauniyar, A., Østerbø, O. N., Håkegård, J. E., & Engelstad, P. (2023). Exploiting Cooperative Downlink NOMA in D2D Communications. Sensors, 23(8), 3958. https://doi.org/10.3390/s23083958