Real-Time Context-Aware Recommendation System for Tourism
Abstract
:1. Introduction
- Development of a customized travel destination RS according to real-time context changes: It is common for existing tourism service tools to recommend destinations based on the relationship between tourists and tourist attractions or tourism patterns. However, recommendations are complex when there is insufficient information or situations that change in real time. In this paper, we try to overcome these limitations by proposing a real-time RS that recommends customized travel destinations according to external factors, distance information, and types of tourists.
- Travel pattern analysis and prediction using ML models: In this study, an ML model is trained using traveler profiles and contextual information to analyze and predict travel patterns. Through this, we can understand travelers’ preferences and behavior patterns and contribute to implementing a personalized RS.
- Data collection and analysis for smart advertising system development: In this study, the important process is to collect and analyze the data necessary to implement the RS. Through this, it is possible to understand the traveler’s preferences and behavioral patterns and derive useful information that can be utilized in the tourism industry, such as smart advertising systems.
2. Related Work
2.1. Filtering-Based Recommendation System
2.2. Machine Learning Used for Recommendation System
2.3. AI-Based Recommendation System
3. Real-Time Recommendation System for Tourism
3.1. Tourist Attraction Used for R2Tour
3.2. Real-Time Context Used for R2Tour
3.3. Tourist Profile Used for R2Tour
4. Experimental Results
4.1. Experimental Settings and Jeju Tourism Dataset
4.2. Recommendation System for Tourism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FIT | Free/Foreign Independent |
CF | Collaborative Filtering |
CB | Content Filtering |
RS | Recommendation System |
AI | Artificial Intelligence |
R2Tour | Real-Time Recommendation System for Tourism |
ML | Machine Learning |
EVGPS | Electric Vehicle Information |
KEPCO KDN | Korea Electric Power Corporation Knowledge Data Network |
References
- Valeri, M. Blockchain technology: Adoption perspectives in tourism. In Entrepreneurship and Organizational Change: Managing Innovation and Creative Capabilities; Springer: Cham, Switzerland, 2020; pp. 27–35. [Google Scholar]
- Fu, Y.; Timothy, D.J. Social media constraints and destination images: The potential of barrier-free internet access for foreign tourists in an internet-restricted destination. Tour. Manag. Perspect. 2021, 37, 100771. [Google Scholar] [CrossRef]
- Lin, S.Y.; Juan, P.J.; Lin, S.W. A tam framework to evaluate the effect of smartphone application on tourism information search behavior of foreign independent travelers. Sustainability 2020, 12, 9366. [Google Scholar] [CrossRef]
- Jung, T.M.; Joe, I. An AI-Based Platform Architecture with Situational Awareness for Travel Plans. In Software Engineering Application in Systems Design: Proceedings of 6th Computational Methods in Systems and Software 2022; Springer: Berlin/Heidelberg, Germany, 2023; Volume 1, pp. 376–384. [Google Scholar]
- Lv, M.; Wang, L.; Yan, K. Research on Cultural Tourism Experience Design Based on Augmented Reality. In Proceedings of the Culture and Computing: 8th International Conference, C&C 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020; Proceedings 22. Springer: Berlin/Heidelberg, Germany, 2020; pp. 172–183. [Google Scholar]
- Javed, U.; Shaukat, K.; Hameed, I.A.; Iqbal, F.; Alam, T.M.; Luo, S. A review of content-based and context-based recommendation systems. Int. J. Emerg. Technol. Learn. (iJET) 2021, 16, 274–306. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, J.; Peng, J.; Su, M. A Smart Tourism Recommendation Algorithm Based on Cellular Geospatial Clustering and Multivariate Weighted Collaborative Filtering. ISPRS Int. J. Geo-Inf. 2021, 10, 628. [Google Scholar] [CrossRef]
- Muneer, M.; Rasheed, U.; Khalid, S.; Ahmad, M. Tour Spot Recommendation System via Content-Based Filtering. In Proceedings of the 2022 16th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 14–15 December 2022; pp. 1–6. [Google Scholar]
- Fayyaz, Z.; Ebrahimian, M.; Nawara, D.; Ibrahim, A.; Kashef, R. Recommendation systems: Algorithms, challenges, metrics, and business opportunities. Appl. Sci. 2020, 10, 7748. [Google Scholar] [CrossRef]
- Batmaz, Z.; Yurekli, A.; Bilge, A.; Kaleli, C. A review on deep learning for recommender systems: Challenges and remedies. Artif. Intell. Rev. 2019, 52, 1–37. [Google Scholar] [CrossRef]
- Feng, C.; Liang, J.; Song, P.; Wang, Z. A fusion collaborative filtering method for sparse data in recommender systems. Inf. Sci. 2020, 521, 365–379. [Google Scholar] [CrossRef]
- Nan, X.; Kanato, K.; Wang, X. Design and Implementation of a Personalized Tourism Recommendation System Based on the Data Mining and Collaborative Filtering Algorithm. Comput. Intell. Neurosci. 2022, 2022, 1424097. [Google Scholar] [CrossRef]
- Shao, Y.; Xie, Y.H. Research on cold-start problem of collaborative filtering algorithm. In Proceedings of the 3rd International Conference on Big Data Research, Cergy-Pontoise, France, 20–22 November 2019; pp. 67–71. [Google Scholar]
- Bentaleb, A.; El Bouzekri El Idrissi, Y.; Ait Lahcen, A. A Review on Content Based Recommender Systems in Tourism. In Proceedings of the International Conference on Digital Technologies and Applications, Fez, Morocco, 29–30 January 2021; pp. 527–541. [Google Scholar]
- Gund, G.S.; Park, J.H.; Harpalsinh, R.; Kota, M.; Shin, J.H.; Kim, T.i.; Gogotsi, Y.; Park, H.S. MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule 2019, 3, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Vincent, D.R.; Deepa, N.; Elavarasan, D.; Srinivasan, K.; Chauhdary, S.H.; Iwendi, C. Sensors driven AI-based agriculture recommendation model for assessing land suitability. Sensors 2019, 19, 3667. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Zhuang, F.; Qin, C.; Zhu, H.; Xie, X.; Xiong, H.; He, Q. A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. 2020, 34, 3549–3568. [Google Scholar] [CrossRef]
- Anwar, T.; Uma, V.; Hussain, M.I.; Pantula, M. Collaborative filtering and kNN based recommendation to overcome cold start and sparsity issues: A comparative analysis. Multimed. Tools Appl. 2022, 81, 35693–35711. [Google Scholar] [CrossRef]
- Elbir, A.; Aydin, N. Music genre classification and music recommendation by using deep learning. Electron. Lett. 2020, 56, 627–629. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, Y.; Hu, X.; Cheng, W. Research on recommendation of insurance products based on random forest. In Proceedings of the 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 8–10 November 2019; pp. 308–311. [Google Scholar]
- Jain, P.K.; Pamula, R.; Yekun, E.A. A multi-label ensemble predicting model to service recommendation from social media contents. J. Supercomput. 2022, 78, 5203–5220. [Google Scholar] [CrossRef]
- Shahbazi, Z.; Byun, Y.C. Product recommendation based on content-based filtering using XGBoost classifier. Int. J. Adv. Sci. Technol 2019, 29, 6979–6988. [Google Scholar]
- Luo, J.; Zhao, W.; Tang, Y.; Zhou, Z.; Xiong, H.; Tao, Z. LightGBM using Enhanced and De-biased Item Representation for Better Session-based Fashion Recommender Systems. In Proceedings of the Recommender Systems Challenge 2022, Seattle, WA, USA, 18–23 September 2022; pp. 24–28. [Google Scholar]
- Wang, W.; Kumar, N.; Chen, J.; Gong, Z.; Kong, X.; Wei, W.; Gao, H. Realizing the potential of the internet of things for smart tourism with 5G and AI. IEEE Netw. 2020, 34, 295–301. [Google Scholar] [CrossRef]
- Al Fararni, K.; Nafis, F.; Aghoutane, B.; Yahyaouy, A.; Riffi, J.; Sabri, A. Hybrid recommender system for tourism based on big data and AI: A conceptual framework. Big Data Min. Anal. 2021, 4, 47–55. [Google Scholar] [CrossRef]
- Hassannia, R.; Vatankhah Barenji, A.; Li, Z.; Alipour, H. Web-based recommendation system for smart tourism: Multiagent technology. Sustainability 2019, 11, 323. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Ding, M.; Shaham, S.; Rahayu, W.; Farokhi, F.; Lin, Z. When machine learning meets privacy: A survey and outlook. ACM Comput. Surv. (CSUR) 2021, 54, 1–36. [Google Scholar] [CrossRef]
- Ali, M.; Jung, L.T.; Abdel-Aty, A.H.; Abubakar, M.Y.; Elhoseny, M.; Ali, I. Semantic-k-NN algorithm: An enhanced version of traditional k-NN algorithm. Expert Syst. Appl. 2020, 151, 113374. [Google Scholar] [CrossRef]
- Kurani, A.; Doshi, P.; Vakharia, A.; Shah, M. A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Ann. Data Sci. 2023, 10, 183–208. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Atallah, R.; Al-Mousa, A. Heart disease detection using machine learning majority voting ensemble method. In Proceedings of the 2019 2nd International Conference on New Trends in Computing Sciences (ICTCS), Amman, Jordan, 9–11 October 2019; pp. 1–6. [Google Scholar]
- Ogunleye, A.; Wang, Q.G. XGBoost model for chronic kidney disease diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 17, 2131–2140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gong, Y. The comparison of LightGBM and XGBoost coupling factor analysis and prediagnosis of acute liver failure. IEEE Access 2020, 8, 220990–221003. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Vultureanu-Albişi, A.; Bădică, C. Recommender systems: An explainable AI perspective. In Proceedings of the 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Kocaeli, Turkey, 25–27 August 2021; pp. 1–6. [Google Scholar]
- Wang, S.; Cao, L.; Wang, Y.; Sheng, Q.Z.; Orgun, M.A.; Lian, D. A survey on session-based recommender systems. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Tavakoli, M.; Faraji, A.; Vrolijk, J.; Molavi, M.; Mol, S.T.; Kismihók, G. An AI-based open recommender system for personalized labor market driven education. Adv. Eng. Inform. 2022, 52, 101508. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, S. Artificial Intelligence based Recommendation System. In Proceedings of the 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 18–19 December 2020; pp. 669–673. [Google Scholar]
- Jannach, D.; Manzoor, A.; Cai, W.; Chen, L. A survey on conversational recommender systems. ACM Comput. Surv. (CSUR) 2021, 54, 1–36. [Google Scholar] [CrossRef]
- Iwendi, C.; Ibeke, E.; Eggoni, H.; Velagala, S.; Srivastava, G. Pointer-based item-to-item collaborative filtering recommendation system using a machine learning model. Int. J. Inf. Technol. Decis. Mak. 2022, 21, 463–484. [Google Scholar] [CrossRef]
- Ballesteros-López, L.; Peñaherrera-Zambrano, S.; Armas-Arias, S.; López-Pérez, S. Web 2.0 Digital Marketing Tools in the Ecuadorian Tourism Sector Against of the COVID-19 Pandemic. In New Realities, Mobile Systems and Applications, Proceedings of the 14th IMCL Conference, Thessaloniki, Greece, 4–5 November 2021; Springer: Cham, Switzerland, 2022; pp. 615–626. [Google Scholar]
- Gazdar, A.; Hidri, L. A new similarity measure for collaborative filtering based recommender systems. Knowl.-Based Syst. 2020, 188, 105058. [Google Scholar] [CrossRef]
- Natarajan, S.; Vairavasundaram, S.; Natarajan, S.; Gandomi, A.H. Resolving data sparsity and cold start problem in collaborative filtering recommender system using linked open data. Expert Syst. Appl. 2020, 149, 113248. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X. Explainable recommendation: A survey and new perspectives. Found. Trends Inf. Retr. 2020, 14, 1–101. [Google Scholar] [CrossRef] [Green Version]
- Torres-Ruiz, M.; Mata, F.; Zagal, R.; Guzmán, G.; Quintero, R.; Moreno-Ibarra, M. A recommender system to generate museum itineraries applying augmented reality and social-sensor mining techniques. Virtual Real. 2020, 24, 175–189. [Google Scholar] [CrossRef]
- Bin, C.; Gu, T.; Sun, Y.; Chang, L. A personalized POI route recommendation system based on heterogeneous tourism data and sequential pattern mining. Multimed. Tools Appl. 2019, 78, 35135–35156. [Google Scholar] [CrossRef]
Model | Dataset | Performance | Reference |
---|---|---|---|
K-NN | Movie Trust | RMSE 0.822 | [18] |
Support Vector Machine | GTZAN | Accuracy 0.976 | [19] |
Random Forest | Insurance Companies | Error Rate 0.16 | [20] |
Voting | SKYTRAX | Accuracy 0.827 | [21] |
XGBoost | Online Shopping Mall | Accuracy 0.896 | [22] |
LightGBM | Dresspi | MRR 0.206 | [23] |
EV_MRID | COUNT | EV_MRID | COUNT | EV_MRID | COUNT | EV_MRID | COUNT |
---|---|---|---|---|---|---|---|
150004 | 788,894 | 140032 | 109,781 | 140015 | 39,635 | 130063 | 5431 |
150005 | 788,893 | 140017 | 67,258 | 140014 | 39,635 | 130073 | 5396 |
150003 | 755,789 | 140046 | 64,938 | 150006 | 39,633 | 130074 | 4784 |
150002 | 755,789 | 150009 | 51,032 | 140068 | 21,316 | 140023 | 3430 |
15E005 | 202,062 | 150008 | 51,032 | 130065 | 19,057 | 150001 | 3084 |
15E003 | 202,062 | 150007 | 51,032 | 130062 | 17,923 | 140069 | 1724 |
15E004 | 202,062 | 140027 | 48,507 | 130067 | 17,600 | 140070 | 922 |
15E001 | 202,062 | 140028 | 46,403 | 130066 | 17,106 | 140067 | 248 |
15E008 | 202,062 | 140013 | 39,927 | 130060 | 16,468 | 140024 | 60 |
15E009 | 202,062 | 140012 | 39,888 | 130075 | 11,549 | 130052 | 40 |
15E002 | 202,062 | 140019 | 39,644 | 130076 | 9532 | 140072 | 32 |
15E007 | 202,062 | 140018 | 39,635 | 130077 | 9157 | 140020 | 8 |
15E006 | 202,062 | 140007 | 39,635 | 130055 | 7817 | 14null | 7 |
Feature | Value | Detail |
---|---|---|
Temperature | 4.8∼29.4 | 4.8∼29.4 (a monthly average) |
Precipitation | 9.1∼610.6 (mm) | 9.1∼610.6 (a monthly average) |
Season | Spring ∼Winter | Spring, Winter, Autumn, Winter |
Age | 10∼50 | 10, 20, 30, 40, 50 |
Sex | Male, Female | Male, Female |
Companion | Alone∼Spouse | Alone, Children, Couple, Family, Friend, Parents, Spouse |
Tour Type | Cultural Tourism∼Shopping | Cultural Tourism, Mature Tourism, Other Tourism, Shopping |
Location | Location | Visit or Plan to Visit Tourist Attractions |
Tourist Attraction | Tourist Attraction | Top Five Tourist Attractions Nearby |
MODEL | Result | ||
---|---|---|---|
F1-Score (Macro) | F1-Score (Micro) | Accuracy | |
K-NN | 0.092 | 0.318 | 0.318 |
SVM | 0.024 | 0.165 | 0.165 |
Random Forest | 0.338 | 0.688 | 0.688 |
Voting | 0.407 | 0.761 | 0.761 |
XGBoost | 0.4 | 0.75 | 0.75 |
LightGBM | 0.415 | 0.773 | 0.773 |
MODEL | Result | ||
---|---|---|---|
F1-Score (Macro) | F1-Score (Micro) | Accuracy | |
K-NN | 0.714 | 0.794 | 0.794 |
SVM | 0.298 | 0.52 | 0.52 |
Random Forest | 0.695 | 0.778 | 0.778 |
Voting | 0.282 | 0.514 | 0.514 |
XGBoost | 0.731 | 0.806 | 0.806 |
LightGBM | 0.583 | 0.71 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.; Choi, C. Real-Time Context-Aware Recommendation System for Tourism. Sensors 2023, 23, 3679. https://doi.org/10.3390/s23073679
Yoon J, Choi C. Real-Time Context-Aware Recommendation System for Tourism. Sensors. 2023; 23(7):3679. https://doi.org/10.3390/s23073679
Chicago/Turabian StyleYoon, JunHo, and Chang Choi. 2023. "Real-Time Context-Aware Recommendation System for Tourism" Sensors 23, no. 7: 3679. https://doi.org/10.3390/s23073679
APA StyleYoon, J., & Choi, C. (2023). Real-Time Context-Aware Recommendation System for Tourism. Sensors, 23(7), 3679. https://doi.org/10.3390/s23073679