Highly Efficient Refractive Index Sensor Based on a Dual-Side Polished SMS Fiber Enabled by Femtosecond Laser Writing
Abstract
:1. Introduction
2. Proposed Fiber-Optic RI Sensor and Its Sensing Mechanism
2.1. Configuration of the Proposed Fiber-Optic RI Sensor
2.2. The Working Mechanism of the Proposed Sensor
3. Fabrication and Experiments
3.1. Fabrication of the Proposed Sensing Device
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giallorenzi, T.; Bucaro, J.; Dandridge, A.; Sigel, G.; Cole, J.; Rashleigh, S.; Priest, R. Optical fiber sensor Technology. IEEE J. Quantum Electron 1982, 18, 626–665. [Google Scholar] [CrossRef] [Green Version]
- Culshaw, B. Optical fiber sensor technologies: Opportunities and-perhaps-pitfalls. J. Lightwave Technol. 2004, 22, 39–50. [Google Scholar] [CrossRef]
- Preininger, C.; Klimant, I.; Wolfbeis, O.S. Optical fiber sensor for biological oxygen demand. Anal. Chem. 1994, 66, 1841–1846. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, W.-B.; Lee, Y.-G.; Lee, S.-S.; Son, S.-H.; Seol, B.-S. Fiber-optic refractometer based on a reflective aspheric prism rendering adjustable sensitivity. J. Lightwave Technol. 2019, 37, 1381–1387. [Google Scholar] [CrossRef]
- Ji, P.; Jiang, S.; Lee, S.-S. Fiber reshaping-based refractive index sensor interrogated through both intensity and wavelength detection. Sensors 2019, 19, 2477. [Google Scholar] [CrossRef] [Green Version]
- Keramati, S.; Passian, A.; Khullar, V.; Beck, J.; Uiterwaal, C.; Batelaan, H. Surface plasmon enhanced fast electron emission from metallised fibre optic nanotips. New J. Phys. 2020, 22, 083069. [Google Scholar] [CrossRef]
- Ahsani, V.; Ahmed, F.; Jun, M.; Bradley, C. Tapered fiber-optic Mach-Zehnder interferometer for ultra-high sensitivity measurement of refractive index. Sensors 2019, 19, 1652. [Google Scholar] [CrossRef] [Green Version]
- Frazão, O.; Baptista, J.M.; Santos, J.L.; Kobelke, J.; Schuster, K. Refractive index tip sensor based on Fabry-Perot cavities formed by a suspended core fibre. J. Eur. Opt. Soc. Rapid 2009, 4, 09041. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.; Shao, L.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
- Frey, B.; Snyder, P.; Ziock, K.; Passian, A. Semicomputational calculation of Bragg shift in stratified materials. Phys. Rev. E 2021, 104, 055307. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, W. Bent-fiber intermodal interference based dual-channel fiber optic refractometer. Opt. Express 2015, 23, 7602–7610. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Luo, H.; Luo, H.; Lai, M.; Liu, D.; Zhang, L. Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection. Opt. Express 2015, 23, 12777–12783. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Su, J.; Cao, Y.; Zhang, W. Simultaneous measurement based on composite interference structure. IEEE Photon. Technol. Lett. 2014, 26, 1310–1313. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Chen, R.; Yang, W.; Liu, H.; Liu, T.; Han, Q. A hybrid multimode interference structure-based refractive index and temperature fiber sensor. IEEE Sens. J. 2016, 16, 331–335. [Google Scholar] [CrossRef]
- Luo, Y.; Xia, L.; Yu, C.; Li, W.; Sun, Q.; Wang, Y.; Liu, D. Multi-parameter optical fiber sensor based on enhanced multimode interference. Opt. Commun. 2015, 344, 120–124. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Tian, K.; Wang, S.; Yuan, L.; Lewis, E.; Farrell, G.; Wang, P. Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance. Opt. Express 2018, 26, 26534–26543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Zhou, J.; Guan, J.; Long, S.; Yu, J.; Guan, H.; Lu, H.; Luo, Y.; Zhang, J.; Chen, Z. Fabrication of side polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing. IEEE J. Sel. Top. Quant. 2017, 23, 238–245. [Google Scholar] [CrossRef]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical Chemical Sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar] [CrossRef]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Olivero, M.; Vallan, A.; Orta, R.; Perrone, G. Single-mode–multimode–single-mode optical fiber sensing structure with quasi-two-mode fibers. IEEE Trans. Instrum. Meas. 2018, 67, 1223–1229. [Google Scholar] [CrossRef]
- Soldano, L.; Pennings, E.C.M. Optical multi-mode interference devices based on self-Imaging: Principles and applications. IEEE/OSA J. Lightw. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Brambilla, G.; Ding, M.; Semenova, Y.; Wu, Q.; Farrell, G. Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing. J. Opt. Soc. Am. B 2011, 28, 1180. [Google Scholar] [CrossRef] [Green Version]
- Cardona-Maya, Y.; Del Villar, L.; Socorro, A.B.; Corres, J.M.; Matias, L.R.; Botero-Cadavid, J.F. Wavelength and phase detection-based SMS fiber sensors optimized with etching and nanodeposition. J. Lightwave Technol. 2017, 35, 3743–3749. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.W.; Franco, M.A.R.; Serrão, V.A.; Cordeiro, C.M.B.; Giraldi, M.T.R. Macrobending SMS fiber-optic anemometer and flow sensor. Opt. Fiber Technol. 2019, 52, 101981. [Google Scholar] [CrossRef]
- Ascorbe, J.; Corres, J.; Arregui, F.; Matias, L. Recent developments in fiber optics humidity sensors. Sensors 2017, 17, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.; Ma, Y.; Zhu, Q.; Che, X.; Sun, J.; Geng, T.; Sun, W.; Yuan, L. A highly sensitive torsion sensor based on symmetrically polished SMS fiber structure. Sens. Actuators A Phys. 2022, 338, 113478. [Google Scholar] [CrossRef]
- Dey, K.; Roy, S. Detailed investigation of spectral properties of SMS fiber segment and its sensing performance under varying multimode fiber lengths. Infrared Phys. Technol. 2022, 127, 104356. [Google Scholar] [CrossRef]
- Ertorer, E.; Haque, M.; Li, J.; Herman, P.R. Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating. Opt. Express 2018, 26, 9323. [Google Scholar] [CrossRef]
- Ioannou, A.; Theodosiou, A.; Caucheteur, C.; Kalli, K. Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser. Opt. Lett. 2020, 42, 5198. [Google Scholar] [CrossRef]
- Chen, N.; Liu, C.; Lu, Z.; Tao, W.; Peng, M. Femtosecond laser processing for a high sensitivity fiber MZI microcavity. Opt. Express 2022, 30, 12397–12408. [Google Scholar] [CrossRef]
- Lo Turco, S.; Di Donato, A.; Criante, L. Scattering effects of glass-embedded microstructures by roughness controlled fs-laser micromachining. J. Micromech. Microeng. 2017, 27, 65007. [Google Scholar] [CrossRef]
- Ji, P.; Lee, S.-S.; Im, Y.-E.; Choi, Y. Determination of geometry-induced positional distortion of ultrafast laser-inscribed circuits in a cylindrical optical fiber. Opt. Lett. 2019, 44, 610. [Google Scholar] [CrossRef] [PubMed]
- Drelich, J.; Chibowski, E.; Meng, D.D.; Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 7, 9804. [Google Scholar] [CrossRef]
- Sequeira, F.; Cennamo, N.; Rudnitskaya, A.; Nogueira, R.; Zeni, L.; Bilro, L. D-Shaped POF Sensors for Refractive Index Sensing—The Importance of Surface Roughness. Sensors 2019, 19, 2476. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Yang, W.; Chen, C.; Yu, X. Fixed Abrasive Polishing in an Anhydrous Environment: A Material Removal Model for Fused Silica. Machines 2022, 10, 147. [Google Scholar] [CrossRef]
- Tan, C.; Zhao, L.; Chen, M.; Cheng, J.; Yang, H.; Liu, Q.; Yin, Z.; Liao, W. Formation mechanism of surface morphology in the process of CO2 pulsed laser processing of fused silica optics. Opt. Laser Technol. 2021, 138, 106838. [Google Scholar] [CrossRef]
- Xu, S.-Z.; Dou, H.-Q.; Sun, K.; Ye, Y.-Y.; Li, Z.; Wang, H.-J.; Liao, W.; Liu, H.; Miao, X.-X.; Yuan, X.-D.; et al. Scan Speed and fluence effects in femtosecond laser induced micro/nano-structures on the surface of fused silica. J. Non-Cryst. Solids 2018, 492, 56–62. [Google Scholar] [CrossRef]
- Li, K.; Myers, N.; Bishop, G.; Li, Y.; Zhao, X. Study of Surface Wettability on Fused Silica by Ultrafast Laser-Induced Micro/Nano-Surface Structures. J. Manuf. Process 2022, 79, 177–184. [Google Scholar] [CrossRef]
- Yong, J.; Yang, Q.; Hou, X.; Chen, F. Nature-inspired superwettability achieved by femtosecond lasers. Ultrafast Sci. 2022, 2022, 9895418. [Google Scholar] [CrossRef]
- Saunders, J.E.; Sanders, C.; Chen, H.; Loock, H. Refractive indices of common solvents and solutions at 1550 nm. Appl. Opt. 2016, 55, 947. [Google Scholar] [CrossRef]
Sensor Structure | RI Detection Range (RIU) | Sensitivity (Maximum) | Reference |
---|---|---|---|
Half-tapered SMF–MMMF–half-tapered SMF | 0.0180 (1.3320–1.3500) | 68.12 nm/RIU (1.3320–1.3500) | [12] |
SMF–MMF–SMF–MMF–SMF | 0.0500 (1.3400–1.3900) | 100.97 nm/RIU (1.3400–1.3900) | [13] |
SMF–NCF–SMF–MMF–SMF | 0.0480 (1.3330–1.3810) | 113.66 nm/RIU (1.3330–1.3760) | [14] |
SMF–MMF–NCF–SMF | 0.0270 (1.3370–1.3640) | 131.71 nm/RIU (1.3370–1.3640) | [15] |
Tapered SHCS + side-polished | 0.0600 (1.3450–1.4050) | 151.29 nm/RIU (1.3450–1.4050) | [16] |
Single-side polished SMF–MMF–SMF | 0.0600 (1.3300–1.3900) | 65.00 nm/RIU (1.3300–1.3900) | [17] |
Dual-side polished SMF–MMF–SMF | 0.0620 (1.3325–1.3945) | 161.40 nm/RIU (1.3571–1.3945) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Jiang, S.; Aberdeen, S.; Lee, S.-S. Highly Efficient Refractive Index Sensor Based on a Dual-Side Polished SMS Fiber Enabled by Femtosecond Laser Writing. Sensors 2023, 23, 3651. https://doi.org/10.3390/s23073651
Li J, Jiang S, Aberdeen S, Lee S-S. Highly Efficient Refractive Index Sensor Based on a Dual-Side Polished SMS Fiber Enabled by Femtosecond Laser Writing. Sensors. 2023; 23(7):3651. https://doi.org/10.3390/s23073651
Chicago/Turabian StyleLi, Jinke, Shiru Jiang, Stuart Aberdeen, and Sang-Shin Lee. 2023. "Highly Efficient Refractive Index Sensor Based on a Dual-Side Polished SMS Fiber Enabled by Femtosecond Laser Writing" Sensors 23, no. 7: 3651. https://doi.org/10.3390/s23073651