Optimized Weight Low-Frequency Search Coil Magnetometer for Ground–Airborne Frequency Domain Electromagnetic Method
Abstract
1. Introduction
2. Materials and Methods
Basic Principles of the Search Coil Magnetometer
3. Design and Results
3.1. Core Coil of Cupped Flux Concentration and the Shape of a Rugby Ball Winding
3.2. Experimental Results
3.2.1. Laboratory Experiment
3.2.2. Field Experiment
3.2.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The United States Geological Survey Has Released a New List of 50 Mineral Commodities Critical to the U.S. Economy and National Security. Available online: http://www.usgs.gov/news/national-news-release/us-geological-survey-releases-2022-list-critical-minerals. (accessed on 15 August 2022).
- Agterberg, F. Aspects of regional and worldwide mineral resource prediction. J. Earth Sci. 2021, 32, 279–287. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, M.; Ma, J.; Zhou, H.; Liang, J.; Lin, J. Divergence of tipper vector imaging for ground–airborne frequency-domain electromagnetic method with orthogonal sources. J. Electromagn. Waves Appl. 2020, 34, 316–329. [Google Scholar] [CrossRef]
- Deidda, G.P.; De Carlo, L.; Caputo, M.C.; Cassiani, G. Frequency domain electromagnetic induction imaging: An effective method to see inside a capped landfill. Waste Manag. 2022, 144, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Farquharson, C.G.; Lin, T. Three-dimensional forward modeling and characterization of the responses of the ground-airborne frequency-domain electromagnetic method. J. Appl. Geophys. 2022, 199, 104588. [Google Scholar] [CrossRef]
- Steuer, A.; Smirnova, M.; Becken, M.; Schiffler, M.; Günther, T.; Rochlitz, R.; Yogeshwar, P.; Mörbe, W.; Siemon, B.; Costabel, S.; et al. Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany. J. Appl. Geophys. 2020, 182, 104172. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, Y.; Liu, C.; Lin, J.; Kang, L.; Li, G.; Zeng, X. Feasibility of signal enhancement with multiple grounded-wire sources for a frequency-domain electromagnetic survey. Geophys. Prospect. 2018, 66, 818–832. [Google Scholar] [CrossRef]
- Yang, Y.A.N.G.; He, J.S.; Li, D.Q. Energy distribution and effective components analysis of 2n sequence pseudo-random signal. Trans. Nonferrous Met. Soc. China 2021, 31, 2102–2115. [Google Scholar] [CrossRef]
- Lin, J.; Kang, L.; Liu, C.; Ren, T.; Zhou, H.; Yao, Y.; Yu, S.; Liu, T.; Liu, P.; Zhang, M. The frequency-domain airborne electromagnetic method with a grounded electrical source. Geophysics 2019, 84, E269–E280. [Google Scholar] [CrossRef]
- Tang, J.T. Frequency-domain electromagnetic methods for exploration of the shallow subsurface: A review. J. Chin. Geophys.-Chin. Ed. 2015, 58, 2681–2705. [Google Scholar]
- Zhou, H.; Lin, J.; Liu, C.; Kang, L.; Li, G.; Zeng, X. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey. Rev. Sci. Instrum. 2016, 87, 034503. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Fu, L.; Wang, Y.; Xu, J.; Ji, Y.; Yang, M. Development of sensor used for grounded electrical source air-ground transient electromagnetic detection. J. Jilin Univ. (Eng. Technol. Ed.) 2014, 44, 888–894. [Google Scholar]
- Yu, S.; Wei, Y.; Zhang, J.; Wang, S. Noise optimization design of frequency-domain air-core sensor based on capacitor tuning technology. Sensors 2019, 20, 194. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Shang, X.L.; Lin, J. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain. Rev. Sci. Instrum. 2016, 87, 054501. [Google Scholar] [CrossRef] [PubMed]
- Auken, E.; Christiansen, A.V.; Westergaard, J.H.; Kirkegaard, C.; Foged, N.; Viezzoli, A. An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system. J. Explor. Geophys. 2009, 40, 184–192. [Google Scholar] [CrossRef]
- Steuer, A.; Siemon, B.; Auken, E. A comparison of helicopter-borne electromagnetics in frequency-and time-domain at the Cuxhaven valley in Northern Germany. J. Appl. Geophys. 2009, 67, 194–205. [Google Scholar] [CrossRef]
- Bournas, N.; Taylor, S.; Prikhodko, A.; Plastow, G.; Kwan, K.; Legault, J.; Berardelli, P. Superparamagnetic effects discrimination in VTEM™ data of Greenland using multiple criteria and predictive approaches. J. Appl. Geophys. 2017, 145, 59–73. [Google Scholar] [CrossRef]
- Xingyu, C.; Shuang, Z.; Shudong, C. An optimal transfer characteristic of an air cored transient electromagnetic sensor. In Proceedings of the International Conference on Industrial Control and Electronics Engineering, IEEE, Xi’an, China, 23–25 August 2012; pp. 482–485. [Google Scholar]
- Coillot, C.; Moutoussamy, J.; Leroy, P.; Chanteur, G.; Roux, A. Improvements on the design of search coil magnetometer for space experiments. J. Sens. Lett. 2007, 5, 167–170. [Google Scholar] [CrossRef]
- Paperno, E.; Grosz, A. A miniature and ultralow power search coil optimized for a 20 mHz to 2 kHz frequency range. J. Appl. Phys. 2009, 105, 07E708. [Google Scholar] [CrossRef]
Type | Weight | Size | Sensitivity |
---|---|---|---|
Core coil | 1.7 kg | 724 mV/nT @ 1 KHz | |
Air coil | 2.4 kg | 227 mV/nT @ 1 KHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, F.; Tong, Y.; Zou, B. Optimized Weight Low-Frequency Search Coil Magnetometer for Ground–Airborne Frequency Domain Electromagnetic Method. Sensors 2023, 23, 3337. https://doi.org/10.3390/s23063337
Teng F, Tong Y, Zou B. Optimized Weight Low-Frequency Search Coil Magnetometer for Ground–Airborne Frequency Domain Electromagnetic Method. Sensors. 2023; 23(6):3337. https://doi.org/10.3390/s23063337
Chicago/Turabian StyleTeng, Fei, Ye Tong, and Bofeng Zou. 2023. "Optimized Weight Low-Frequency Search Coil Magnetometer for Ground–Airborne Frequency Domain Electromagnetic Method" Sensors 23, no. 6: 3337. https://doi.org/10.3390/s23063337
APA StyleTeng, F., Tong, Y., & Zou, B. (2023). Optimized Weight Low-Frequency Search Coil Magnetometer for Ground–Airborne Frequency Domain Electromagnetic Method. Sensors, 23(6), 3337. https://doi.org/10.3390/s23063337