Advanced Sensors Technologies Applied in Mobile Robot
1. Sensing for Localisation
2. Sensing for Situation Awareness
3. Path Planning
4. Control Algorithms
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galeote-Luque, A.; Ruiz-Sarmiento, J.R.; Gonzalez-Jimenez, J. Efficient 3D Lidar Odometry Based on Planar Patches. Sensors 2022, 22, 6976. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.; Mronga, D.; Bergonzani, I.; Kumar, S.; Kirchner, F. Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot. Sensors 2022, 22, 9853. [Google Scholar] [CrossRef] [PubMed]
- Sarcevic, P.; Csik, D.; Odry, A. Indoor 2D Positioning Method for Mobile Robots Based on the Fusion of RSSI and Magnetometer Fingerprints. Sensors 2023, 23, 1855. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torriti, M.; Nazate-Burgos, P.; Paredes-Lizama, F.; Guevara, J.; Auat Cheein, F. Passive Landmark Geometry Optimization and Evaluation for Reliable Autonomous Navigation in Mining Tunnels Using 2D Lidars. Sensors 2022, 22, 3038. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Ali, A.; Tahir, A.; Rahman, M.Z.U.; Khan, A.M. Efficient Approach for Extracting High-Level B-Spline Features from LIDAR Data for Light-Weight Mapping. Sensors 2022, 22, 9168. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, D.; Lee, S.; Jun, K.; Kim, M.S. Deep-Learning-Based ADHD Classification Using Children’s Skeleton Data Acquired through the ADHD Screening Game. Sensors 2023, 23, 246. [Google Scholar] [CrossRef] [PubMed]
- Pathmakumar, T.; Muthugala, M.A.V.J.; Samarakoon, S.M.B.P.; Gómez, B.F.; Elara, M.R. A Novel Path Planning Strategy for a Cleaning Audit Robot Using Geometrical Features and Swarm Algorithms. Sensors 2022, 22, 5317. [Google Scholar] [CrossRef] [PubMed]
- Pathmakumar, T.; Elara, M.R.; Soundararajan, S.V.; Ramalingam, B. Toward a Comprehensive Domestic Dirt Dataset Curation for Cleaning Auditing Applications. Sensors 2022, 22, 5201. [Google Scholar] [CrossRef] [PubMed]
- Pookkuttath, S.; Rajesh Elara, M.; Sivanantham, V.; Ramalingam, B. AI-Enabled Predictive Maintenance Framework for Autonomous Mobile Cleaning Robots. Sensors 2022, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Lopez Lopez, R.; Batista Sanchez, M.J.; Perez Jimenez, M.; Arrue, B.C.; Ollero, A. Autonomous UAV System for Cleaning Insulators in Power Line Inspection and Maintenance. Sensors 2021, 21, 8488. [Google Scholar] [CrossRef] [PubMed]
- Semwal, A.; Mohan, R.E.; Melvin, L.M.J.; Palanisamy, P.; Baskar, C.; Yi, L.; Pookkuttath, S.; Ramalingam, B. False Ceiling Deterioration Detection and Mapping Using a Deep Learning Framework and the Teleoperated Reconfigurable ‘Falcon’ Robot. Sensors 2022, 22, 262. [Google Scholar] [CrossRef] [PubMed]
- Šelek, A.; Seder, M.; Brezak, M.; Petrović, I. Smooth Complete Coverage Trajectory Planning Algorithm for a Nonholonomic Robot. Sensors 2022, 22, 9269. [Google Scholar] [CrossRef] [PubMed]
- Benko Loknar, M.; Klančar, G.; Blažič, S. Minimum-Time Trajectory Generation for Wheeled Mobile Systems Using Bézier Curves with Constraints on Velocity, Acceleration and Jerk. Sensors 2023, 23, 1982. [Google Scholar] [CrossRef]
- Klančar, G.; Zdešar, A.; Krishnan, M. Robot Navigation Based on Potential Field and Gradient Obtained by Bilinear Interpolation and a Grid-Based Search. Sensors 2022, 22, 3295. [Google Scholar] [CrossRef] [PubMed]
- González, L.; López, A.M.; Álvarez, J.C.; Álvarez, D. Real-Time Short-Term Pedestrian Trajectory Prediction Based on Gait Biomechanics. Sensors 2022, 22, 5828. [Google Scholar] [CrossRef] [PubMed]
- Vo, A.T.; Truong, T.N.; Kang, H.J. An Adaptive Prescribed Performance Tracking Motion Control Methodology for Robotic Manipulators with Global Finite-Time Stability. Sensors 2022, 22, 7834. [Google Scholar] [CrossRef] [PubMed]
- Keipour, A.; Pereira, G.A.S.; Bonatti, R.; Garg, R.; Rastogi, P.; Dubey, G.; Scherer, S. Visual Servoing Approach to Autonomous UAV Landing on a Moving Vehicle. Sensors 2022, 22, 6549. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, G.; Chacón, R.; Fabregas, E.; Garcia, G.; Schröder, K.; Marroquín, A.; Dormido-Canto, S.; Farias, G. Modeling and Control of a Spherical Robot in the CoppeliaSim Simulator. Sensors 2022, 22, 6020. [Google Scholar] [CrossRef] [PubMed]
- Klančar, G.; Seder, M. Coordinated Multi-Robotic Vehicles Navigation and Control in Shop Floor Automation. Sensors 2022, 22, 1455. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klančar, G.; Seder, M.; Blažič, S. Advanced Sensors Technologies Applied in Mobile Robot. Sensors 2023, 23, 2958. https://doi.org/10.3390/s23062958
Klančar G, Seder M, Blažič S. Advanced Sensors Technologies Applied in Mobile Robot. Sensors. 2023; 23(6):2958. https://doi.org/10.3390/s23062958
Chicago/Turabian StyleKlančar, Gregor, Marija Seder, and Sašo Blažič. 2023. "Advanced Sensors Technologies Applied in Mobile Robot" Sensors 23, no. 6: 2958. https://doi.org/10.3390/s23062958
APA StyleKlančar, G., Seder, M., & Blažič, S. (2023). Advanced Sensors Technologies Applied in Mobile Robot. Sensors, 23(6), 2958. https://doi.org/10.3390/s23062958