A Novel Dielectric Modulated Gate-Stack Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor-Based Sensor for Detecting Biomolecules
Abstract
:1. Introduction
2. Device Structure and Simulation Framework
3. Working Principle of the Device
4. Discussion of Simulation Results
4.1. Electric Field
4.2. Surface Potential
4.3. Energy Band Diagram
4.4. Drain Current
4.5. Threshold Voltage
4.6. Sensitivity
4.7. Analog/RF Performance
4.8. Noise Characteristic
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, R.K.; Gupta, M.; Gupta, R.S. TCAD Assessment of Device Design Technologies for Enhanced Performance of Nanoscale DG MOSFET. IEEE Trans. Electron Devices 2011, 58, 2936–2943. [Google Scholar] [CrossRef]
- Mohankumar, N.; Syamal, B.; Sarkar, C.K. Influence of Channel and Gate Engineering on the Analog and RF Performance of DG MOSFETS. IEEE Trans. Electron Devices 2010, 57, 820–826. [Google Scholar] [CrossRef]
- Djeffal, F.; Ghoggali, Z.; Dibi, Z.; Lakhdar, N. Analytical analysis of nanoscale multiple-gate MOSFETs including effects of hot-carrier induced interface charges. Microelectron. Reliab. 2009, 49, 377–381. [Google Scholar] [CrossRef]
- Pati, S.K.; Koley, K.; Dutta, A.; Mohankumar, N.; Sarkar, C.K. Study of body and oxide thickness variation on analog and RF performance of underlap DG-MOSFETs. Microelectron. Reliab. 2014, 54, 1137–1142. [Google Scholar] [CrossRef]
- Bendib, T.; Djeffal, F. Electrical Performance Optimization of Nanoscale Double-Gate MOSFETs Using Multiobjective Genetic Algorithms. IEEE Trans. Electron Devices 2011, 58, 3743–3750. [Google Scholar] [CrossRef]
- Swain, S.K.; Dutta, A.; Adak, S.; Pati, S.K.; Sarkar, C.K. Influence of channel length and high-K oxide thickness on subthresholdanalog/RF performance of graded channel and gate stack DG-MOSFETs. Microelectron. Reliab. 2016, 61, 24–29. [Google Scholar] [CrossRef]
- Chowdhury, D.; De, B.P.; Maji, K.B.; Kar, R.; Mandal, D. An Evolutionary Approach Based Optimization of Small Signal Parameters for GSDG MOSFET. In Proceedings of the 2020 IEEE VLSI Device Circuit and System (VLSI DCS), Kolkata, India, 18–19 July 2020; pp. 146–149. [Google Scholar] [CrossRef]
- Ghosh, P.; Haldar, S.; Gupta, R.S.; Gupta, M. An Investigation of Linearity Performance and Intermodulation Distortion of GME CGT MOSFET for RFIC Design. IEEE Trans. Electron Devices 2012, 59, 3263–3268. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, J.; Lee, K.; Jung, C.; Park, H.G.; Choi, Y. A New Sensing Metric to Reduce Data Fluctuations in a Nanogap-Embedded Field-Effect Transistor Biosensor. IEEE Trans. Electron Devices 2012, 59, 2825–2831. [Google Scholar] [CrossRef]
- Kim, S.; Baek, D.; Kim, J.Y.; Choi, S.J.; Seol, M.L.; Choi, Y.K. A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 2012, 101, 073703. [Google Scholar] [CrossRef] [Green Version]
- Buvaneswari, B.; Balamurugan, N.B. Comparative analytical analysis of various configurations of nanoscaled dielectric-modulated double gate MOSFET based biosensors. J. Optoelectron. Adv. Mater. 2018, 20, 526–536. [Google Scholar]
- Verma, M.; Tirkey, S.; Yadav, S.; Sharma, D.; Yadav, D.S. Performance Assessment of a Novel Vertical Dielectrically Modulated TFET-Based Biosensor. IEEE Trans. Electron Devices 2017, 64, 3841–3848. [Google Scholar] [CrossRef]
- Ajay Narang, R.; Saxena, M.; Gupta, M. Ivestigation of dielectric modulated (DM) double-gate (DG) junctionless MOSFETs for application as a biosensor. Superlattices Microstruct. 2015, 85, 557–572. [Google Scholar] [CrossRef]
- Mendiratta, N.; Tripathi, S.L.; Padmanaban, S.; Hossain, E. Design and Analysis of Heavily Doped n+ Pocket Asymmetrical Junction-Less Double Gate MOSFET for Biomedical Applications. Appl. Sci. 2020, 10, 2499. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.; Singh, N.K.; Sahoo, M.; Rahaman, H. Work function optimization for enhancement of the sensitivity of dual-material (DM), double-gate (DG), junctionless MOSFET-based biosensor. Appl. Phys. A 2021, 127, 130. [Google Scholar] [CrossRef]
- Rahman, E.; Shadman, A.; Khosru Quazi, D.M. Effect of biomolecule position and fill in factor on sensitivity of a Dielectric Modulated Double Gate Junctionless MOSFET biosensor. Sens. Bio Sens. Res. 2017, 13, 49–54. [Google Scholar] [CrossRef]
- Ajay Narang, R.; Saxena, M.; Gupta, M. Modeling of gate underlap junctionless double-gate MOSFET as bio-sensor. Mater. Sci. Semicond. Process. 2017, 71, 240–251. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, J.Y.; Jung, C.; Moon, D.I.; Choi, S.J.; Kim, C.H.; Lee, K.B.; Park, H.G.; Choi, Y.K. CMOS-Based Biosensors with an Independent Double-Gate FinFET. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011. [Google Scholar] [CrossRef]
- Ahn, J.H.; Choi, S.J.; Han, J.W.; Park, T.J.; Lee, S.Y.; Choi, Y.K. Double-gate nanowire field-effect transistor for a biosensor. Nano Lett. 2010, 10, 2934–2938. [Google Scholar] [CrossRef]
- Abdi, D.B.; Kumar, M.J. Dielectric modulated overlapping gate-on-drain tunnel-FET as a label-free biosensor. Superlattices Microstruct. 2015, 86, 198–202. [Google Scholar] [CrossRef]
- Dwivedi, P.; Kranti, A. Dielectric Modulated Biosensor Architecture: Tunneling or Accumulation Based Transistor. IEEE Sens. J. 2018, 18, 3228–3235. [Google Scholar] [CrossRef]
- Kanungo, S.; Chattopadhyay, S.; Gupta, P.S.; Rahaman, H. Comparative Performance Analysis of the Dielectrically Modulated Full- Gate and Short-Gate Tunnel FET-Based Biosensors. IEEE Trans. Electron Devices 2015, 62, 994–1001. [Google Scholar] [CrossRef]
- Kim, C.H.; Jung, C.; Park, H.G.; Choi, Y.K. Novel Dielectric-Modulated Field-Effect Transistor for Label-Free DNA Detection. BIOCHIP J. 2009, 2, 127–134. [Google Scholar]
- Lee, K.W.; Choi, S.J.; Ahn, J.H.; Moon, D.I.; Park, T.J.; Lee, S.Y.; Choi, Y.K. An underlap field-effect transistor for electrical detection of influenza. Appl. Phys. Lett. 2010, 96, 033703. [Google Scholar] [CrossRef] [Green Version]
- Makarona, E.; Kapetanakis, E.; Velessiotis, D.M.; Douvas, A.; Argitis, P.; Normand, P.; Gotszalk, T.; Woszczyna, M.; Glezos, N. Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates. Microelectron. Eng. 2008, 85, 1399–1402. [Google Scholar] [CrossRef]
- Im, H.; Huang, X.J.; Gu, B.; Choi, Y.K. A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2007, 2, 430–434. [Google Scholar] [CrossRef]
- Jang, D.Y.; Kim, Y.P.; Kim, H.S.; Park, S.H.K.; Choi, S.Y.; Choi, Y.K. Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding. J. Vac. Sci. Technol. B 2007, 25, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Jung, S.M.; Kim, Y.H.; Kim, B.J.; Ha, S.; Kim, Y.S.; Yoon, T.S.; Lee, H.H. Characterization of gold nanoparticle pentacene memory device with polymer dielectric layer. Thin Solid Film. 2011, 519, 6140–6143. [Google Scholar] [CrossRef]
- Chandra, S.; Pandya, H.; Vyas, A. Integration of MEMS with nanostructured metal-oxide materials for improved sensors for volatile organic compounds. In Proceedings of the SPIE 8549, 16th International Workshop on Physics of Semiconductor Devices, Kanpur, India, 19–22 December 2011. [Google Scholar] [CrossRef]
- Han, S.J.; Han, J.K.; Kim, M.S.; Yun, G.J.; Yu, J.M.; Tcho, I.W.; Seo, M.; Lee, G.B.; Choi, Y.K. Ternary logic decoder using independently controlled double-gate Si-NW MOSFETs. Sci. Rep. 2021, 11, 13018. [Google Scholar] [CrossRef]
- ATLAS Device Simulation Software; Silvaco Int.: Santa Clara, CA, USA, 2015.
- Intrinsic Protein. Biology. Available online: https://www.britannica.com/science/intrinsic-protein (accessed on 4 April 2021).
- Chakraborty, A.; Sarkar, A. Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate mosfet (JLGSSRG) for application as biosensor. J. Comput. Electron. 2017, 16, 556–567. [Google Scholar] [CrossRef]
- Ouarghi, N.; Dibi, Z.; Hedjaji, N. Impact of triple-material gate and highly doped source/drain extensions on sensitivity of DNA biosensor. J. Comput. Electron. 2018, 17, 1797–1806. [Google Scholar] [CrossRef]
- Singh, S.; Raja, B.; Vishvakarma, S.K. Analytical modeling of split-gate junction-less transistor for a biosensor application. Sens. Bio Sens. Res. 2018, 18, 31–36. [Google Scholar] [CrossRef]
- Kumari, M.; Singh, N.K.; Sahoo, M.; Rahaman, H. 2-D Analytical Modeling and Simulation of Dual Material, Double Gate, Gate Stack Engineered, Junctionless MOSFET based Biosensor with Enhanced Sensitivity. Silicon 2022, 14, 4473–4484. [Google Scholar] [CrossRef]
Symbol | Quantity | Ref. [13] | JL-DM-DG-MOSFET | JL-DM-GSDG-MOSFET |
---|---|---|---|---|
tsi (nm) | Silicon thickness | 10 | 10 | 10 |
L (nm) | Channel length | 100 | 50 | 50 |
Vgs (V) | Gate voltage | 1 | 1 | 1 |
Vds (V) | Drain source voltage | 1 | 1 | 1 |
tox1 (nm) | Thickness of the SiO2 in cavity | 1 | 1 | 1 |
tox1 (nm) | Thickness of the SiO2 at gate dielectric | 0 | 0 | 1 |
Lox (nm) | Length of the HfO2 Layer | 50 | 30 | 30 |
tox (nm) | Thickness of the HfO2 Layer | 10 | 10 | 9 |
Lbio (nm) | Length of the nanogap cavity | 10 | 10 | 10 |
tbio (nm) | Thickness of the nanogap cavity | 9 | 9 | 9 |
ϕ m (eV) | Work function | NR | 4.8 | 4.8 |
NA (cm-3) | Channel doping | 1 × 1019 | 4.20 × 1018 | 4.20 × 1018 |
ε 2 | Permittivity of the gate oxide | Al2O3 | 25 | 25 |
Nf (cm-2) | Interface fixed Charge | ±4 × 1012 | ±4 × 1012 | ±4 × 1012 |
Biomolecule | tbio (nm) | ε bio |
---|---|---|
APTES | 0.9 [10,28] | 3.57 [10,13,16,25] |
Biotin | 0.6 [10] | 2.63 [10,13,16] |
Protein | 4–10 [32] | 2.50 [13,16] |
Streptavidin | 6.1 [10] | 2.1 [10,13,16] |
DNA | 6 [23] | 1–64 [23] |
Symbol | Quantity | JL-DM-DG-MOSFET | JL-DM-GSDG-MOSFET |
---|---|---|---|
SS (mV/dec) | Subthreshold swing | 70.32 | 80.74 |
Ioff (A/µm) | OFF-state current | 1.45 × 10−10 | 1.45 × 10−9 |
Ion (A/µm) | ON-state current | 5.49 × 10−4 | 5.56 × 10−4 |
Vth (V) | Threshold voltage | 0.199 | 0.086 |
Ion/Ioff | Current ratio Ion/Ioff | 3.80 × 106 | 7.75 × 104 |
Device Parameter | SM-DG [13] | JL-GSSRG [33] | Gate Underlap [34] | Split Gate [35] | DM-DG [36] | JL-DM-GSDG [Proposed Work] |
---|---|---|---|---|---|---|
Channel length | 100nm | 50 nm | 100nm | 225 nm | 100 nm | 50 nm |
Length of Cavity | 25 nm | 25 nm | 25 nm | 175 nm | 25 nm | 10 nm |
Thickness of cavity | 9 nm | 10 nm | 9nm | 9nm | 9 nm | 9 nm |
gate oxide | Al2O3 | HfO2+ SiO2 | T iO2+ SiO2 | HfO2 | T iO2 + SiO2 | HfO2 + SiO2 |
Channel thickness | 10 nm | 20 nm | 10 nm | 10 nm | 10 nm | 10 nm |
Sensitivity (for neutral biomolecules) | 0.08 V | 0.175 V | 0.2 V | 0.22 V | 0.227 V | 0.04 V |
Sensitivity (for charged biomolecules) | 0.27 V | - | 0.165 V | 0.35 V | 0.36 V | 0.481V |
Sensitivity Ion/Ioff ratio | 1010 | 109 | 109 | – | 1013 | 1011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, D.; De, B.P.; Appasani, B.; Singh, N.K.; Kar, R.; Mandal, D.; Bizon, N.; Thounthong, P. A Novel Dielectric Modulated Gate-Stack Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor-Based Sensor for Detecting Biomolecules. Sensors 2023, 23, 2953. https://doi.org/10.3390/s23062953
Chowdhury D, De BP, Appasani B, Singh NK, Kar R, Mandal D, Bizon N, Thounthong P. A Novel Dielectric Modulated Gate-Stack Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor-Based Sensor for Detecting Biomolecules. Sensors. 2023; 23(6):2953. https://doi.org/10.3390/s23062953
Chicago/Turabian StyleChowdhury, Dibyendu, Bishnu Prasad De, Bhargav Appasani, Navaneet Kumar Singh, Rajib Kar, Durbadal Mandal, Nicu Bizon, and Phatiphat Thounthong. 2023. "A Novel Dielectric Modulated Gate-Stack Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor-Based Sensor for Detecting Biomolecules" Sensors 23, no. 6: 2953. https://doi.org/10.3390/s23062953
APA StyleChowdhury, D., De, B. P., Appasani, B., Singh, N. K., Kar, R., Mandal, D., Bizon, N., & Thounthong, P. (2023). A Novel Dielectric Modulated Gate-Stack Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor-Based Sensor for Detecting Biomolecules. Sensors, 23(6), 2953. https://doi.org/10.3390/s23062953