Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Setup
2.3. Data Acquisition and Analysis
2.4. Statistical Analysis
3. Results
3.1. Tibial Acceleration and Spatio-Temporal Running Parameters
3.2. Inter-Subject Variability
3.3. Association Tibial Acceleration vs. Spatio-Temporal Running Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarchi, D.; Pope, J.; Lee, T.K.M.; Tamjidi, L.; Mirzaei, A.; Sanei, S. A Review on Accelerometry-Based Gait Analysis and Emerging Clinical Applications. Rbme 2018, 11, 177–194. [Google Scholar] [CrossRef]
- Spartano, N.L.; Lyass, A.; Larson, M.G.; Tran, T.; Andersson, C.; Blease, S.J.; Esliger, D.W.; Vasan, R.S.; Murabito, J.M. Objective physical activity and physical performance in middle-aged and older adults. Exp. Gerontol. 2019, 119, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Milner, C.; Hawkins, J.; Aubol, K. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing. Med. Sci. Sport. Exerc. 2020, 52, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, A.S.; Hayano, T.; Jamison, S.T.; Outerleys, J.; Davis, I.S. Tibial Acceleration Measured from Wearable Sensors Is Associated with Loading Rates in Injured Runners. PMR 2020, 12, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Moore, I.S.; Willy, R.W. Use of wearables: Tracking and retraining in endurance runners. Curr. Sport. Med. Rep. 2019, 18, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Gindre, C.; Lussiana, T.; Hebert-Losier, K.; Morin, J. Reliability and validity of the Myotest® for measuring running stride kinematics. J. Sport. Sci. 2015, 34, 664. [Google Scholar] [CrossRef]
- Lucas-Cuevas, A.G.; Encarnación-Martínez, A.; Camacho-García, A.; Llana-Belloch, S.; Pérez-Soriano, P. The location of the tibial accelerometer does influence impact acceleration parameters during running. J. Sport. Sci. 2017, 35, 1734–1738. [Google Scholar] [CrossRef]
- Camelio, K.; Gruber, A.H.; Powell, D.W.; Paquette, M.R. Influence of prolonged running and training on tibial acceleration and movement quality in novice runners. J. Athl. Train. 2020, 55, 1292–1299. [Google Scholar] [CrossRef]
- Izquierdo-Renau, M.; Queralt, A.; Encarnación-Martínez, A.; Perez-Soriano, P. Impact Acceleration During Prolonged Running While Wearing Conventional Versus Minimalist Shoes. Res. Q. Exerc. Sport 2021, 92, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Bamberg, S.; Benbasat, A.Y.; Scarborough, D.M.; Krebs, D.E.; Paradiso, J.A. Gait Analysis Using a Shoe-Integrated Wireless Sensor System. Titb 2008, 12, 413–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, M.; Scheerder, J.; Thibaut, E.; Brombacher, A.; Vos, S. Who uses running apps and sports watches? Determinants and consumer profiles of event runners’ usage of running-related smartphone applications and sports watches. PLoS ONE 2017, 12, e0181167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claes, J.; Buys, R.; Avila, A.; Finlay, D.; Kennedy, A.; Guldenring, D.; Budts, W.; Cornelissen, V. Validity of heart rate measurements by the Garmin Forerunner 225 at different walking intensities. J. Med. Eng. Technol. 2017, 41, 480–485. [Google Scholar] [CrossRef]
- Støve, M.P.; Haucke, E.; Nymann, M.L.; Sigurdsson, T.; Larsen, B.T. Accuracy of the wearable activity tracker Garmin Forerunner 235 for the assessment of heart rate during rest and activity. J. Sport. Sci. 2019, 37, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Agosto, D.E. From health to performance. Aslib J. Inf. Manag. 2019, 71, 217–240. [Google Scholar] [CrossRef]
- Karahanoglu, A.; De Freitas Gouveia, R.H.; Reenalda, J.; Ludden, G.D.S. How Are Sports-Trackers Used by Runners? Running-Related Data, Personal Goals, and Self-Tracking in Running. Sensors 2021, 21, 3687. [Google Scholar] [CrossRef]
- Janssen, M.A.; Walravens, R.; Thibaut, E.; Scheerder, J.; Brombacher, A.C.; Vos, S.B. Understanding different types of recreational runners and how they use running-related technology. Int. J. Environ. Res. Public Health 2020, 17, 2276. [Google Scholar] [CrossRef] [Green Version]
- Emig, T.; Peltonen, J. Human running performance from real-world big data. Nat. Commun. 2020, 11, 4936. [Google Scholar] [CrossRef]
- Witt, D.R.; Kellogg, R.A.; Snyder, M.P.; Dunn, J. Windows into human health through wearables data analytics. Curr. Opin. Biomed. Eng. 2019, 9, 28–46. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, N.U.; Kobsar, D.; Benson, L.; Clermont, C.; Kohrs, R.; Osis, S.T.; Ferber, R. Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions. PLoS ONE 2018, 13, e0203839. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.P.; Fullerton, E.; Walton, L.; Funnell, E.; Pantazis, D.; Lugo, H. The validity and reliability of wearable devices for the measurement of vertical oscillation for running. PLoS ONE 2022, 17, e0277810. [Google Scholar] [CrossRef]
- Bowser, B.; Fellin, R.; Milner, C.; Pohl, M.; Davis, I. Reducing Impact Loading in Runners: A One-Year Follow-up. Med. Sci. Sport. Exerc. 2018, 50, 2500–2506. [Google Scholar] [CrossRef]
- Morris, J.B.; Goss, D.L.; Miller, E.M.; Davis, I.S. Using real-time biofeedback to alter running biomechanics: A randomized controlled trial. Transl. Sport. Med. 2020, 3, 63–71. [Google Scholar] [CrossRef]
- Davis, I.S.; Bowser, B.J.; Mullineaux, D.R. Greater vertical impact loading in female runners with medically diagnosed injuries: A prospective investigation. Br. J. Sport. Med. 2016, 50, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Sheerin, K.R.; Besier, T.F.; Reid, D.; Hume, P.A. The one-week and six-month reliability and variability of three-dimensional tibial acceleration in runners. Sport. Biomech. 2018, 17, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.D.; Tenforde, A.S.; Outerleys, J.; Reilly, J.; Davis, I.S. Impact-Related Ground Reaction Forces Are More Strongly Associated With Some Running Injuries Than Others. Am. J. Sport. Med. 2020, 48, 3072–3080. [Google Scholar] [CrossRef]
- Phan, X.; Grisbrook, T.L.; Wernli, K.; Stearne, S.M.; Davey, P.; Ng, L. Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique. J. Sport. Sci. 2017, 35, 1636–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirscoveanu, C.; Dam, P.; Brandi, A.; Bilgram, M.; Oliveira, A.S. Fatigue-related changes in vertical impact properties during normal and silent running. J. Sport. Sci. 2021, 39, 421–429. [Google Scholar] [CrossRef]
- Tate, J.J.; Milner, C.E. Sound-intensity feedback during running reduces loading rates and impact peak. J. Orthop. Sport. Phys. Ther. 2017, 47, 565–569. [Google Scholar] [CrossRef]
- Pirscoveanu, C.; Oliveira, A.S. The use of multi-directional footfall sound recordings to describe running vertical impact properties. J. Sport. Sci. 2021, 39, 267–274. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Pirscoveanu, C.I. Implications of sample size and acquired number of steps to investigate running biomechanics. Sci. Rep. 2021, 11, 3083. [Google Scholar] [CrossRef]
- Hader, K.; Rumpf, M.C.; Hertzog, M.; Kilduff, L.P.; Girard, O.; Silva, J.R. Monitoring the Athlete Match Response: Can External Load Variables Predict Post-match Acute and Residual Fatigue in Soccer? A Systematic Review with Meta-analysis. Sports Med.—Open 2019, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Li, S.N.; Hobbins, L.; Morin, J.; Ryu, J.H.; Gaoua, N.; Hunter, S.; Girard, O. Running mechanics adjustments to perceptually-regulated interval runs in hypoxia and normoxia. J. Sci. Med. Sport 2020, 23, 1111–1116. [Google Scholar] [CrossRef]
- Price, K.; Bird, S.R.; Lythgo, N.; Raj, I.S.; Wong, J.Y.L.; Lynch, C. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. J. Med. Eng. Technol. 2017, 41, 208–215. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheerin, K.R.; Reid, D.; Besier, T.F. The measurement of tibial acceleration in runners—A review of the factors that can affect tibial acceleration during running and evidence-based guidelines for its use. Gait Posture 2019, 67, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Simoni, L.; Pancani, S.; Vannetti, F.; Macchi, C.; Pasquini, G. Relationship between Lower Limb Kinematics and Upper Trunk Acceleration in Recreational Runners. J. Healthc. Eng. 2020, 2020, 8973010. [Google Scholar] [CrossRef] [Green Version]
- Folland, J.; Allen, S.; Black, M.; Handsaker, J.; Forrester, S. Running Technique is an Important Component of Running Economy and Performance. Med. Sci. Sport. Exerc. 2017, 49, 1412–1423. [Google Scholar] [CrossRef] [Green Version]
- Van Hooren, B.; Goudsmit, J.; Restrepo, J.; Vos, S. Real-time feedback by wearables in running: Current approaches, challenges and suggestions for improvements. J. Sport. Sci. 2019, 38, 214. [Google Scholar] [CrossRef] [PubMed]
- Derungs, A.; Amft, O. Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis. Sci. Rep. 2020, 10, 11450. [Google Scholar] [CrossRef]
- Van den Berghe, P.; Lorenzoni, V.; Derie, R.; Six, J.; Gerlo, J.; Leman, M.; De Clercq, D. Music-based biofeedback to reduce tibial shock in over-ground running: A proof-of-concept study. Sci. Rep. 2021, 11, 4091. [Google Scholar] [CrossRef] [PubMed]
- Schütte, K.H.; Aeles, J.; De Beéck, T.O.; van der Zwaard, B.C.; Venter, R.; Vanwanseele, B. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry. Gait Posture 2016, 48, 220–225. [Google Scholar] [CrossRef] [PubMed]
Variables | Normal | Silent | p |
---|---|---|---|
Peak tibial acceleration | 14.2 ± 3.71 | 17.64 ± 3.45 * | <0.0001 |
Heart rate | 7.04 ± 3.53 | 5.60 ± 2.12 * | 0.02 |
Cadence | 2.38 ± 1.60 | 3.09 ± 2.70 | 0.24 |
Running speed | 3.81 ± 1.23 | 4.75 ± 2.43 * | <0.05 |
Trunk vertical oscillation | 5.23 ± 3.11 | 5.89 ± 3.26 | 0.38 |
Stride length | 6.79 ± 3.58 | 6.98 ± 2.60 | 0.81 |
Foot contact time | 3.98 ± 4.03 | 5.68 ± 4.97 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirscoveanu, C.-I.; Oliveira, A.S. Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running. Sensors 2023, 23, 2928. https://doi.org/10.3390/s23062928
Pirscoveanu C-I, Oliveira AS. Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running. Sensors. 2023; 23(6):2928. https://doi.org/10.3390/s23062928
Chicago/Turabian StylePirscoveanu, Cristina-Ioana, and Anderson Souza Oliveira. 2023. "Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running" Sensors 23, no. 6: 2928. https://doi.org/10.3390/s23062928
APA StylePirscoveanu, C. -I., & Oliveira, A. S. (2023). Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running. Sensors, 23(6), 2928. https://doi.org/10.3390/s23062928