Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Setup
2.3. Data Acquisition and Analysis
2.4. Statistical Analysis
3. Results
3.1. Tibial Acceleration and Spatio-Temporal Running Parameters
3.2. Inter-Subject Variability
3.3. Association Tibial Acceleration vs. Spatio-Temporal Running Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarchi, D.; Pope, J.; Lee, T.K.M.; Tamjidi, L.; Mirzaei, A.; Sanei, S. A Review on Accelerometry-Based Gait Analysis and Emerging Clinical Applications. Rbme 2018, 11, 177–194. [Google Scholar] [CrossRef]
- Spartano, N.L.; Lyass, A.; Larson, M.G.; Tran, T.; Andersson, C.; Blease, S.J.; Esliger, D.W.; Vasan, R.S.; Murabito, J.M. Objective physical activity and physical performance in middle-aged and older adults. Exp. Gerontol. 2019, 119, 203–211. [Google Scholar] [CrossRef]
- Milner, C.; Hawkins, J.; Aubol, K. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing. Med. Sci. Sport. Exerc. 2020, 52, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, A.S.; Hayano, T.; Jamison, S.T.; Outerleys, J.; Davis, I.S. Tibial Acceleration Measured from Wearable Sensors Is Associated with Loading Rates in Injured Runners. PMR 2020, 12, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Moore, I.S.; Willy, R.W. Use of wearables: Tracking and retraining in endurance runners. Curr. Sport. Med. Rep. 2019, 18, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Gindre, C.; Lussiana, T.; Hebert-Losier, K.; Morin, J. Reliability and validity of the Myotest® for measuring running stride kinematics. J. Sport. Sci. 2015, 34, 664. [Google Scholar] [CrossRef]
- Lucas-Cuevas, A.G.; Encarnación-Martínez, A.; Camacho-García, A.; Llana-Belloch, S.; Pérez-Soriano, P. The location of the tibial accelerometer does influence impact acceleration parameters during running. J. Sport. Sci. 2017, 35, 1734–1738. [Google Scholar] [CrossRef]
- Camelio, K.; Gruber, A.H.; Powell, D.W.; Paquette, M.R. Influence of prolonged running and training on tibial acceleration and movement quality in novice runners. J. Athl. Train. 2020, 55, 1292–1299. [Google Scholar] [CrossRef]
- Izquierdo-Renau, M.; Queralt, A.; Encarnación-Martínez, A.; Perez-Soriano, P. Impact Acceleration During Prolonged Running While Wearing Conventional Versus Minimalist Shoes. Res. Q. Exerc. Sport 2021, 92, 182–188. [Google Scholar] [CrossRef]
- Bamberg, S.; Benbasat, A.Y.; Scarborough, D.M.; Krebs, D.E.; Paradiso, J.A. Gait Analysis Using a Shoe-Integrated Wireless Sensor System. Titb 2008, 12, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.; Scheerder, J.; Thibaut, E.; Brombacher, A.; Vos, S. Who uses running apps and sports watches? Determinants and consumer profiles of event runners’ usage of running-related smartphone applications and sports watches. PLoS ONE 2017, 12, e0181167. [Google Scholar] [CrossRef] [PubMed]
- Claes, J.; Buys, R.; Avila, A.; Finlay, D.; Kennedy, A.; Guldenring, D.; Budts, W.; Cornelissen, V. Validity of heart rate measurements by the Garmin Forerunner 225 at different walking intensities. J. Med. Eng. Technol. 2017, 41, 480–485. [Google Scholar] [CrossRef]
- Støve, M.P.; Haucke, E.; Nymann, M.L.; Sigurdsson, T.; Larsen, B.T. Accuracy of the wearable activity tracker Garmin Forerunner 235 for the assessment of heart rate during rest and activity. J. Sport. Sci. 2019, 37, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Agosto, D.E. From health to performance. Aslib J. Inf. Manag. 2019, 71, 217–240. [Google Scholar] [CrossRef]
- Karahanoglu, A.; De Freitas Gouveia, R.H.; Reenalda, J.; Ludden, G.D.S. How Are Sports-Trackers Used by Runners? Running-Related Data, Personal Goals, and Self-Tracking in Running. Sensors 2021, 21, 3687. [Google Scholar] [CrossRef]
- Janssen, M.A.; Walravens, R.; Thibaut, E.; Scheerder, J.; Brombacher, A.C.; Vos, S.B. Understanding different types of recreational runners and how they use running-related technology. Int. J. Environ. Res. Public Health 2020, 17, 2276. [Google Scholar] [CrossRef]
- Emig, T.; Peltonen, J. Human running performance from real-world big data. Nat. Commun. 2020, 11, 4936. [Google Scholar] [CrossRef]
- Witt, D.R.; Kellogg, R.A.; Snyder, M.P.; Dunn, J. Windows into human health through wearables data analytics. Curr. Opin. Biomed. Eng. 2019, 9, 28–46. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, N.U.; Kobsar, D.; Benson, L.; Clermont, C.; Kohrs, R.; Osis, S.T.; Ferber, R. Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions. PLoS ONE 2018, 13, e0203839. [Google Scholar] [CrossRef]
- Smith, C.P.; Fullerton, E.; Walton, L.; Funnell, E.; Pantazis, D.; Lugo, H. The validity and reliability of wearable devices for the measurement of vertical oscillation for running. PLoS ONE 2022, 17, e0277810. [Google Scholar] [CrossRef]
- Bowser, B.; Fellin, R.; Milner, C.; Pohl, M.; Davis, I. Reducing Impact Loading in Runners: A One-Year Follow-up. Med. Sci. Sport. Exerc. 2018, 50, 2500–2506. [Google Scholar] [CrossRef]
- Morris, J.B.; Goss, D.L.; Miller, E.M.; Davis, I.S. Using real-time biofeedback to alter running biomechanics: A randomized controlled trial. Transl. Sport. Med. 2020, 3, 63–71. [Google Scholar] [CrossRef]
- Davis, I.S.; Bowser, B.J.; Mullineaux, D.R. Greater vertical impact loading in female runners with medically diagnosed injuries: A prospective investigation. Br. J. Sport. Med. 2016, 50, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Sheerin, K.R.; Besier, T.F.; Reid, D.; Hume, P.A. The one-week and six-month reliability and variability of three-dimensional tibial acceleration in runners. Sport. Biomech. 2018, 17, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.D.; Tenforde, A.S.; Outerleys, J.; Reilly, J.; Davis, I.S. Impact-Related Ground Reaction Forces Are More Strongly Associated With Some Running Injuries Than Others. Am. J. Sport. Med. 2020, 48, 3072–3080. [Google Scholar] [CrossRef]
- Phan, X.; Grisbrook, T.L.; Wernli, K.; Stearne, S.M.; Davey, P.; Ng, L. Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique. J. Sport. Sci. 2017, 35, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Pirscoveanu, C.; Dam, P.; Brandi, A.; Bilgram, M.; Oliveira, A.S. Fatigue-related changes in vertical impact properties during normal and silent running. J. Sport. Sci. 2021, 39, 421–429. [Google Scholar] [CrossRef]
- Tate, J.J.; Milner, C.E. Sound-intensity feedback during running reduces loading rates and impact peak. J. Orthop. Sport. Phys. Ther. 2017, 47, 565–569. [Google Scholar] [CrossRef]
- Pirscoveanu, C.; Oliveira, A.S. The use of multi-directional footfall sound recordings to describe running vertical impact properties. J. Sport. Sci. 2021, 39, 267–274. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Pirscoveanu, C.I. Implications of sample size and acquired number of steps to investigate running biomechanics. Sci. Rep. 2021, 11, 3083. [Google Scholar] [CrossRef]
- Hader, K.; Rumpf, M.C.; Hertzog, M.; Kilduff, L.P.; Girard, O.; Silva, J.R. Monitoring the Athlete Match Response: Can External Load Variables Predict Post-match Acute and Residual Fatigue in Soccer? A Systematic Review with Meta-analysis. Sports Med.—Open 2019, 5, 48. [Google Scholar] [CrossRef]
- Li, S.N.; Hobbins, L.; Morin, J.; Ryu, J.H.; Gaoua, N.; Hunter, S.; Girard, O. Running mechanics adjustments to perceptually-regulated interval runs in hypoxia and normoxia. J. Sci. Med. Sport 2020, 23, 1111–1116. [Google Scholar] [CrossRef]
- Price, K.; Bird, S.R.; Lythgo, N.; Raj, I.S.; Wong, J.Y.L.; Lynch, C. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. J. Med. Eng. Technol. 2017, 41, 208–215. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Sheerin, K.R.; Reid, D.; Besier, T.F. The measurement of tibial acceleration in runners—A review of the factors that can affect tibial acceleration during running and evidence-based guidelines for its use. Gait Posture 2019, 67, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Simoni, L.; Pancani, S.; Vannetti, F.; Macchi, C.; Pasquini, G. Relationship between Lower Limb Kinematics and Upper Trunk Acceleration in Recreational Runners. J. Healthc. Eng. 2020, 2020, 8973010. [Google Scholar] [CrossRef]
- Folland, J.; Allen, S.; Black, M.; Handsaker, J.; Forrester, S. Running Technique is an Important Component of Running Economy and Performance. Med. Sci. Sport. Exerc. 2017, 49, 1412–1423. [Google Scholar] [CrossRef]
- Van Hooren, B.; Goudsmit, J.; Restrepo, J.; Vos, S. Real-time feedback by wearables in running: Current approaches, challenges and suggestions for improvements. J. Sport. Sci. 2019, 38, 214. [Google Scholar] [CrossRef] [PubMed]
- Derungs, A.; Amft, O. Estimating wearable motion sensor performance from personal biomechanical models and sensor data synthesis. Sci. Rep. 2020, 10, 11450. [Google Scholar] [CrossRef]
- Van den Berghe, P.; Lorenzoni, V.; Derie, R.; Six, J.; Gerlo, J.; Leman, M.; De Clercq, D. Music-based biofeedback to reduce tibial shock in over-ground running: A proof-of-concept study. Sci. Rep. 2021, 11, 4091. [Google Scholar] [CrossRef] [PubMed]
- Schütte, K.H.; Aeles, J.; De Beéck, T.O.; van der Zwaard, B.C.; Venter, R.; Vanwanseele, B. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry. Gait Posture 2016, 48, 220–225. [Google Scholar] [CrossRef] [PubMed]
Variables | Normal | Silent | p |
---|---|---|---|
Peak tibial acceleration | 14.2 ± 3.71 | 17.64 ± 3.45 * | <0.0001 |
Heart rate | 7.04 ± 3.53 | 5.60 ± 2.12 * | 0.02 |
Cadence | 2.38 ± 1.60 | 3.09 ± 2.70 | 0.24 |
Running speed | 3.81 ± 1.23 | 4.75 ± 2.43 * | <0.05 |
Trunk vertical oscillation | 5.23 ± 3.11 | 5.89 ± 3.26 | 0.38 |
Stride length | 6.79 ± 3.58 | 6.98 ± 2.60 | 0.81 |
Foot contact time | 3.98 ± 4.03 | 5.68 ± 4.97 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirscoveanu, C.-I.; Oliveira, A.S. Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running. Sensors 2023, 23, 2928. https://doi.org/10.3390/s23062928
Pirscoveanu C-I, Oliveira AS. Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running. Sensors. 2023; 23(6):2928. https://doi.org/10.3390/s23062928
Chicago/Turabian StylePirscoveanu, Cristina-Ioana, and Anderson Souza Oliveira. 2023. "Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running" Sensors 23, no. 6: 2928. https://doi.org/10.3390/s23062928
APA StylePirscoveanu, C.-I., & Oliveira, A. S. (2023). Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running. Sensors, 23(6), 2928. https://doi.org/10.3390/s23062928