Control and Optimisation of Power Grids Using Smart Meter Data: A Review
Abstract
:1. Introduction
- First, it identifies the challenges that smart grid development faces at each domain level. Then, a review is conducted to introduce applications that aim to solve the challenges. Challenges and applications from smart grid perspective are mainly established from the grid operator side, which aims to increase the profit of the smart grid operations.
- As the smart meter is essential to support smart grid operations, the challenges of smart grid development are reflected in the smart meter perspective. The review identifies the challenges and provides the applications for solutions. The challenges and applications from smart meter perspective are mainly developed from the customer side, which focuses on improving user satisfaction and smart grid performance.
- The potential future applications and research directions for smart grids are outlined, which bring about the corresponding future developments of smart meters. The development of smart grids facilitates the evolution of smart metering technologies, while the improvements of smart meters enhance the operation performance of smart grids. In addition, the acceptance of the smart meter implementation is discussed from the customer perspective, which is fundamental for the smooth development of smart grids.
2. Smart Grids and Smart Meters
2.1. Smart Grids
2.1.1. Energy Generation
2.1.2. Power Transmission
2.1.3. Power Distribution
2.1.4. Operation
2.1.5. Utility
2.1.6. Electricity Market
2.1.7. Consumer
2.2. Smart Meters
2.2.1. Periodic and Precise Metering
2.2.2. Data Collection, Storage and Alarming
2.2.3. Communication Interfaces
2.2.4. Demand Side Management
2.2.5. Data Management Systems
3. How Smart Meters Support Smart Grids
3.1. Applications from Smart Grid Perspective
3.1.1. Frequency and Voltage Control
3.1.2. Demand Response
3.1.3. Scheduling and Forecasting
3.1.4. Vehicle-to-Everything (V2X)
3.2. Features of Smart Grid
3.2.1. Complexity
3.2.2. Scalability
3.2.3. Flexibility
3.2.4. Adaptivity
3.2.5. Accuracy
3.2.6. Efficiency
3.2.7. Security
3.3. Applications from Smart Meter Perspective
3.3.1. Smart Meter Deployment
3.3.2. Automatic Metering
3.3.3. Smart Meter Data Analysis
3.3.4. Consumer Profiling
3.3.5. Privacy Protection
3.3.6. Fault Detection
4. Further Developments of Smart Grids, and Challenges of Smart Meters
4.1. Communication Capacity
4.2. Computation Constraints
4.3. Cooperation with “Smarter” AI
4.4. Consumers’ Engagement and Awareness
- External and internal influence: The external influence indicates the impact of user’s decisions externally such as policies or other users. In contrast, the internal influence indicates the intrinsic determinant that impacts the user’s decisions, such as awareness and self-motivation. To overcome such barriers, some approaches can be applied, including incentives and publicity.
- User appeal and ability: User appeal and ability refer to the smart metering technologies that can constantly attract users’ interest and provide suitable control ability for users to manage their power consumption. To overcome such barriers, personalized services can be applied to satisfy individual requirements.
- Reliability: The reliability of the smart meter is essential to guarantee reliable operations and low maintenance costs. It requires the smart meter to operate under extreme conditions like low temperatures, high voltages and disclosure to electromagnetic waves, while maintaining high performance. High reliability can also improve the customers’ confidence and satisfaction.
- Ease of use: Ease of use stands for the difficulty of users interacting with smart meters. As most of the smart meters are installed on the consumer side, they are the interface for consumers to interact with smart grids. Therefore, a user-friendly UI of smart meters is important for consumers to better track their energy usage and understand consumption policies to rapidly respond to the variations in smart grids.
- Privacy: Smart meter data are regarded as users’ privacy, where the level of data security impacts their acceptance of smart meters. Therefore, advanced privacy protection technologies are required.
5. Conclusions
- From the smart grid perspective, many applications are developed to facilitate the penetration of renewable energies and to increase the benefit for grid operators and consumers with the support of smart meters. The evolution of communication and computation technologies further pushes the development of the smart grid towards the IoT in the future, where more electric devices are expected to be involved in more intelligent cooperative operations.
- From the smart meter perspective, the development of smart grids reflects several essential features, which promote the evolution of smart meter applications. The applications are not only dedicated to improving the operation performance, but also enhance the relationship between customers. Customer awareness significantly influences the implementation of smart meters. Requirements such as personalized services and privacy protection stimulate the advancement of smart metering technologies, which are expected to have more interactions with consumers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diahovchenko, I.; Kolcun, M.; Čonka, Z.; Savkiv, V.; Mykhailyshyn, R. Progress and challenges in smart grids: Distributed generation, smart metering, energy storage and smart loads. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1319–1333. [Google Scholar] [CrossRef]
- Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Hossain, M.; Madlool, N.; Rahim, N.; Selvaraj, J.; Pandey, A.; Khan, A.F. Role of smart grid in renewable energy: An overview. Renew. Sustain. Energy Rev. 2016, 60, 1168–1184. [Google Scholar] [CrossRef]
- Bajaj, M.; Singh, A.K. Grid integrated renewable DG systems: A review of power quality challenges and state-of-the-art mitigation techniques. Int. J. Energy Res. 2020, 44, 26–69. [Google Scholar] [CrossRef]
- Faheem, M.; Shah, S.B.H.; Butt, R.A.; Raza, B.; Anwar, M.; Ashraf, M.W.; Ngadi, M.A.; Gungor, V.C. Smart grid communication and information technologies in the perspective of Industry 4.0: Opportunities and challenges. Comput. Sci. Rev. 2018, 30, 1–30. [Google Scholar] [CrossRef]
- Lu, X.; Wang, W.; Ma, J. An empirical study of communication infrastructures towards the smart grid: Design, implementation, and evaluation. IEEE Trans. Smart Grid 2013, 4, 170–183. [Google Scholar] [CrossRef]
- Ourahou, M.; Ayrir, W.; Hassouni, B.E.; Haddi, A. Review on smart grid control and reliability in presence of renewable energies: Challenges and prospects. Math. Comput. Simul. 2020, 167, 19–31. [Google Scholar] [CrossRef]
- Rehmani, M.H.; Reisslein, M.; Rachedi, A.; Erol-Kantarci, M.; Radenkovic, M. Integrating renewable energy resources into the smart grid: Recent developments in information and communication technologies. IEEE Trans. Ind. Inform. 2018, 14, 2814–2825. [Google Scholar] [CrossRef]
- Avancini, D.B.; Rodrigues, J.J.; Martins, S.G.; Rabêlo, R.A.; Al-Muhtadi, J.; Solic, P. Energy meters evolution in smart grids: A review. J. Clean. Prod. 2019, 217, 702–715. [Google Scholar] [CrossRef]
- Martins, J.F.; Pronto, A.G.; Delgado-Gomes, V.; Sanduleac, M. Smart meters and advanced metering infrastructure. In Pathways to a Smarter Power System; Elsevier: Amsterdam, The Netherlands, 2019; pp. 89–114. [Google Scholar]
- Lovell, H. The promise of smart grids. Local Environ. 2019, 24, 580–594. [Google Scholar] [CrossRef]
- Rihan, M. Applications and requirements of smart grid. In Smart Grids and Their Communication Systems; Springer: Singapore, 2019; pp. 47–79. [Google Scholar]
- Tuballa, M.L.; Abundo, M.L. A review of the development of Smart Grid technologies. Renew. Sustain. Energy Rev. 2016, 59, 710–725. [Google Scholar] [CrossRef]
- Kochański, M.; Korczak, K.; Skoczkowski, T. Technology innovation system analysis of electricity smart metering in the European Union. Energies 2020, 13, 916. [Google Scholar] [CrossRef]
- Leiva, J.; Palacios, A.; Aguado, J.A. Smart metering trends, implications and necessities: A policy review. Renew. Sustain. Energy Rev. 2016, 55, 227–233. [Google Scholar] [CrossRef]
- Cooper, A.; Shuster, M. Electric Company Smart Meter Deployments: Foundation for a Smart Grid; The Institute for Electric Innovation (IEI): Washington, DC, USA, 2016. [Google Scholar]
- Rivas, A.E.L.; Abrao, T. Faults in smart grid systems: Monitoring, detection and classification. Electr. Power Syst. Res. 2020, 189, 106602. [Google Scholar] [CrossRef]
- Kabalci, E.; Kabalci, Y. Smart Grids and Their Communication Systems; Number 1; Springer: Singapore, 2019. [Google Scholar]
- Raza, N.; Akbar, M.Q.; Soofi, A.A.; Akbar, S. Study of smart grid communication network architectures and technologies. J. Comput. Commun. 2019, 7, 19–29. [Google Scholar] [CrossRef]
- Ghorbanian, M.; Dolatabadi, S.H.; Masjedi, M.; Siano, P. Communication in smart grids: A comprehensive review on the existing and future communication and information infrastructures. IEEE Syst. J. 2019, 13, 4001–4014. [Google Scholar] [CrossRef]
- Abrahamsen, F.E.; Ai, Y.; Cheffena, M. Communication technologies for smart grid: A comprehensive survey. Sensors 2021, 21, 8087. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 2018, 10, 3125–3148. [Google Scholar] [CrossRef]
- Alahakoon, D.; Yu, X. Smart electricity meter data intelligence for future energy systems: A survey. IEEE Trans. Ind. Inform. 2015, 12, 425–436. [Google Scholar] [CrossRef]
- El Mrabet, Z.; Kaabouch, N.; El Ghazi, H.; El Ghazi, H. Cyber-security in smart grid: Survey and challenges. Comput. Electr. Eng. 2018, 67, 469–482. [Google Scholar] [CrossRef]
- Chaudhari, A.; Mulay, P. A bibliometric survey on incremental clustering algorithm for electricity smart meter data analysis. Iran J. Comput. Sci. 2019, 2, 197–206. [Google Scholar] [CrossRef]
- IEEE Innovation. The Smart Grid Could Hold the Keys to Electric Vehicles. 2018. Available online: https://innovationatwork.ieee.org/the-smart-grid-could-hold-the-keys-to-electric-vehicles/ (accessed on 17 December 2022).
- Keeping, S. Power Modules Underpin Smart Grid Adoption; Digi-Key Electronics: Thief River Falls, MN, USA, 2015. [Google Scholar]
- Gopstein, A.; Nguyen, C.; O’Fallon, C.; Hastings, N.; Wollman, D. NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 4.0; Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021.
- Tur, M.R.; Bayindir, R. A review of active power and frequency control in smart grid. In Proceedings of the 2019 1st Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 12–15 June 2019; pp. 483–488. [Google Scholar]
- Jordehi, A.R. Optimisation of demand response in electric power systems, a review. Renew. Sustain. Energy Rev. 2019, 103, 308–319. [Google Scholar] [CrossRef]
- Darmis, O.; Korres, G. A Survey on Hybrid SCADA/WAMS State Estimation Methodologies in Electric Power Transmission Systems. Energies 2023, 16, 618. [Google Scholar] [CrossRef]
- Hao, X.; Wang, Y.; Wu, C.; Wang, A.Y.; Song, L.; Hu, C.; Yu, L. Smart meter deployment optimization for efficient electrical appliance state monitoring. In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 25–30. [Google Scholar]
- Wen, G.; Yu, X.; Liu, Z. Recent progress on the study of distributed economic dispatch in smart grid: An overview. Front. Inf. Technol. Electron. Eng. 2021, 22, 25–39. [Google Scholar] [CrossRef]
- Alirezazadeh, A.; Rashidinejad, M.; Abdollahi, A.; Afzali, P.; Bakhshai, A. A new flexible model for generation scheduling in a smart grid. Energy 2020, 191, 116438. [Google Scholar] [CrossRef]
- Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A comprehensive review of recent advances in smart grids: A sustainable future with renewable energy resources. Energies 2020, 13, 6269. [Google Scholar] [CrossRef]
- Razavi, R.; Gharipour, A.; Fleury, M.; Akpan, I.J. Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy Build. 2019, 183, 195–208. [Google Scholar] [CrossRef]
- Pappu, S.J.; Bhatt, N.; Pasumarthy, R.; Rajeswaran, A. Identifying topology of low voltage distribution networks based on smart meter data. IEEE Trans. Smart Grid 2017, 9, 5113–5122. [Google Scholar] [CrossRef]
- Khan, Z.A.; Jayaweera, D. Smart meter data based load forecasting and demand side management in distribution networks with embedded PV systems. IEEE Access 2019, 8, 2631–2644. [Google Scholar] [CrossRef]
- Donaldson, D.L.; Jayaweera, D. Effective solar prosumer identification using net smart meter data. Int. J. Electr. Power Energy Syst. 2020, 118, 105823. [Google Scholar] [CrossRef]
- Al-Khatib, O.; Hardjawana, W.; Vucetic, B. Traffic modeling and optimization in public and private wireless access networks for smart grids. IEEE Trans. Smart Grid 2014, 5, 1949–1960. [Google Scholar] [CrossRef]
- Shaukat, N.; Ali, S.; Mehmood, C.; Khan, B.; Jawad, M.; Farid, U.; Ullah, Z.; Anwar, S.; Majid, M. A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid. Renew. Sustain. Energy Rev. 2018, 81, 1453–1475. [Google Scholar] [CrossRef]
- Aladesanmi, E.; Folly, K. Overview of non-intrusive load monitoring and identification techniques. IFAC-PapersOnLine 2015, 48, 415–420. [Google Scholar] [CrossRef]
- Tekler, Z.D.; Low, R.; Zhou, Y.; Yuen, C.; Blessing, L.; Spanos, C. Near-real-time plug load identification using low-frequency power data in office spaces: Experiments and applications. Appl. Energy 2020, 275, 115391. [Google Scholar] [CrossRef]
- Franco, P.; Martinez, J.M.; Kim, Y.C.; Ahmed, M.A. IoT based approach for load monitoring and activity recognition in smart homes. IEEE Access 2021, 9, 45325–45339. [Google Scholar] [CrossRef]
- Tekler, Z.; Low, R.; Blessing, L. Using smart technologies to identify occupancy and plug-in appliance interaction patterns in an office environment. IOP Conf. Ser. Mater. Sci. Eng. 2019, 609, 062010. [Google Scholar] [CrossRef]
- Aslam, W.; Soban, M.; Akhtar, F.; Zaffar, N.A. Smart meters for industrial energy conservation and efficiency optimization in Pakistan: Scope, technology and applications. Renew. Sustain. Energy Rev. 2015, 44, 933–943. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Kang, C.; Xia, Q.; Luo, M. Sparse and redundant representation-based smart meter data compression and pattern extraction. IEEE Trans. Power Syst. 2016, 32, 2142–2151. [Google Scholar] [CrossRef]
- Komatsu, H.; Kimura, O. Peak demand alert system based on electricity demand forecasting for smart meter data. Energy Build. 2020, 225, 110307. [Google Scholar] [CrossRef]
- Sahoo, S.; Nikovski, D.; Muso, T.; Tsuru, K. Electricity theft detection using smart meter data. In Proceedings of the 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 18–20 February 2015; pp. 1–5. [Google Scholar]
- Papadimitrakis, M.; Giamarelos, N.; Stogiannos, M.; Zois, E.; Livanos, N.I.; Alexandridis, A. Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications. Renew. Sustain. Energy Rev. 2021, 145, 111072. [Google Scholar] [CrossRef]
- Sarker, E.; Halder, P.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Progress on the demand side management in smart grid and optimization approaches. Int. J. Energy Res. 2021, 45, 36–64. [Google Scholar] [CrossRef]
- Batalla-Bejerano, J.; Trujillo-Baute, E.; Villa-Arrieta, M. Smart meters and consumer behaviour: Insights from the empirical literature. Energy Policy 2020, 144, 111610. [Google Scholar] [CrossRef]
- Asghar, M.R.; Dán, G.; Miorandi, D.; Chlamtac, I. Smart meter data privacy: A survey. IEEE Commun. Surv. Tutor. 2017, 19, 2820–2835. [Google Scholar] [CrossRef]
- Moutis, P.; Amini, M.H.; Khan, I.A.; He, G.; Mohammadi, J.; Kar, S.; Whitacre, J. A survey of recent developments and requirements for modern power system control. In Pathways to a Smarter Power System; Academic Press: Cambridge, MA, USA, 2019; pp. 289–316. [Google Scholar]
- Saputro, N.; Akkaya, K. Investigation of smart meter data reporting strategies for optimized performance in smart grid AMI networks. IEEE Internet Things J. 2017, 4, 894–904. [Google Scholar] [CrossRef]
- Obaid, Z.A.; Cipcigan, L.M.; Abrahim, L.; Muhssin, M.T. Frequency control of future power systems: Reviewing and evaluating challenges and new control methods. J. Mod. Power Syst. Clean Energy 2019, 7, 9–25. [Google Scholar] [CrossRef]
- Alzate, E.B.; Bueno-López, M.; Xie, J.; Strunz, K. Distribution system state estimation to support coordinated voltage-control strategies by using smart meters. IEEE Trans. Power Syst. 2019, 34, 5198–5207. [Google Scholar] [CrossRef]
- Ahmed, M.; Meegahapola, L.; Vahidnia, A.; Datta, M. Stability and control aspects of microgrid architectures–a comprehensive review. IEEE Access 2020, 8, 144730–144766. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, X.; Xu, W.; Wen, G. Modeling and control of islanded DC microgrid clusters with hierarchical event-triggered consensus algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 68, 376–386. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, Y.; Zhang, B. Data-driven optimal voltage regulation using input convex neural networks. Electr. Power Syst. Res. 2020, 189, 106741. [Google Scholar] [CrossRef]
- Ku, T.T.; Lin, C.H.; Chen, C.S.; Hsu, C.T. Coordination of transformer on-load tap changer and PV smart inverters for voltage control of distribution feeders. IEEE Trans. Ind. Appl. 2018, 55, 256–264. [Google Scholar] [CrossRef]
- Tang, R.; Wang, S. Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids. Appl. Energy 2019, 242, 873–882. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, N.; Kang, C.; Li, M.; Huo, M. From demand response to integrated demand response: Review and prospect of research and application. Prot. Control Mod. Power Syst. 2019, 4, 12. [Google Scholar] [CrossRef]
- Lu, R.; Hong, S.H. Incentive-based demand response for smart grid with reinforcement learning and deep neural network. Appl. Energy 2019, 236, 937–949. [Google Scholar] [CrossRef]
- Qiu, Y.; Kirkeide, L.; Wang, Y.D. Effects of voluntary time-of-use pricing on summer electricity usage of business customers. Environ. Resour. Econ. 2018, 69, 417–440. [Google Scholar] [CrossRef]
- Mahmud, K.; Hossain, M.J.; Town, G.E. Peak-load reduction by coordinated response of photovoltaics, battery storage, and electric vehicles. IEEE Access 2018, 6, 29353–29365. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Arcos-Vargas, A.; Lugo, D.; Núñez, F. Residential peak electricity management. A storage and control systems application taking advantages of smart meters. Int. J. Electr. Power Energy Syst. 2018, 102, 110–121. [Google Scholar] [CrossRef]
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [Google Scholar] [CrossRef]
- Sweeney, C.; Bessa, R.J.; Browell, J.; Pinson, P. The future of forecasting for renewable energy. Wiley Interdiscip. Rev. Energy Environ. 2020, 9, e365. [Google Scholar] [CrossRef]
- Al Mamun, A.; Sohel, M.; Mohammad, N.; Sunny, M.S.H.; Dipta, D.R.; Hossain, E. A comprehensive review of the load forecasting techniques using single and hybrid predictive models. IEEE Access 2020, 8, 134911–134939. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Tang, R. Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load. Appl. Energy 2019, 237, 180–195. [Google Scholar] [CrossRef]
- Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renew. Sustain. Energy Rev. 2018, 81, 1548–1568. [Google Scholar] [CrossRef]
- Ziel, F.; Steinert, R. Probabilistic mid-and long-term electricity price forecasting. Renew. Sustain. Energy Rev. 2018, 94, 251–266. [Google Scholar] [CrossRef]
- Bibra, E.M.; Connelly, E.; Gorner, M.; Lowans, C.; Paoli, L.; Tattini, J.; Teter, J. Global EV Outlook 2021: Accelerating Ambitions Despite the Pandemic; OECD: Paris, France, 2021. [Google Scholar]
- Wang, M.; Abdalla, M.A.A. Optimal Energy Scheduling Based on Jaya Algorithm for Integration of Vehicle-to-Home and Energy Storage System with Photovoltaic Generation in Smart Home. Sensors 2022, 22, 1306. [Google Scholar] [CrossRef] [PubMed]
- Sangswang, A.; Konghirun, M. Optimal strategies in home energy management system integrating solar power, energy storage, and vehicle-to-grid for grid support and energy efficiency. IEEE Trans. Ind. Appl. 2020, 56, 5716–5728. [Google Scholar] [CrossRef]
- Lee, J.; Lee, E.; Kim, J. Electric vehicle charging and discharging algorithm based on reinforcement learning with data-driven approach in dynamic pricing scheme. Energies 2020, 13, 1950. [Google Scholar] [CrossRef]
- Thompson, A.W. Economic implications of lithium ion battery degradation for Vehicle-to-Grid (V2X) services. J. Power Sources 2018, 396, 691–709. [Google Scholar] [CrossRef]
- Ranasinghe, K.; Sabatini, R.; Gardi, A.; Bijjahalli, S.; Kapoor, R.; Fahey, T.; Thangavel, K. Advances in Integrated System Health Management for mission-essential and safety-critical aerospace applications. Prog. Aerosp. Sci. 2022, 128, 100758. [Google Scholar] [CrossRef]
- Ding, L.; Yin, G.-Y.; Zheng, W.-X.; Han, Q.-L. Distributed energy management for smart grids with an event-triggered communication scheme. IEEE Trans. Control Syst. Technol. 2018, 27, 1950–1961. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, K.; Chan, K.W.; Li, C.; Lu, X.; Bu, S.; Gao, X. Optimal coordination of electric vehicles for virtual power plants with dynamic communication spectrum allocation. IEEE Trans. Ind. Inform. 2020, 17, 450–462. [Google Scholar] [CrossRef]
- Lezama, F.; Soares, J.; Canizes, B.; Vale, Z. Flexibility management model of home appliances to support DSO requests in smart grids. Sustain. Cities Soc. 2020, 55, 102048. [Google Scholar] [CrossRef]
- Ponoćko, J.; Milanović, J.V. Forecasting demand flexibility of aggregated residential load using smart meter data. IEEE Trans. Power Syst. 2018, 33, 5446–5455. [Google Scholar] [CrossRef]
- Åström, K.J.; Wittenmark, B. Adaptive Control; Courier Corporation: Chelmsford, MA, USA, 2013. [Google Scholar]
- Mu, C.; Liu, W.; Xu, W. Hierarchically adaptive frequency control for an EV-integrated smart grid with renewable energy. IEEE Trans. Ind. Inform. 2018, 14, 4254–4263. [Google Scholar] [CrossRef]
- Wei, F.; Wan, Z.; He, H. Cyber-attack recovery strategy for smart grid based on deep reinforcement learning. IEEE Trans. Smart Grid 2019, 11, 2476–2486. [Google Scholar] [CrossRef]
- Wu, C.; Hug, G.; Kar, S. Distributed voltage regulation in distribution power grids: Utilizing the photovoltaics inverters. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 2725–2731. [Google Scholar]
- Khan, I.; Xu, Y.; Kar, S.; Sun, H. Compressive sensing-based optimal reactive power control of a multi-area power system. IEEE Access 2017, 5, 23576–23588. [Google Scholar] [CrossRef]
- Otuoze, A.O.; Mustafa, M.W.; Larik, R.M. Smart grids security challenges: Classification by sources of threats. J. Electr. Syst. Inf. Technol. 2018, 5, 468–483. [Google Scholar] [CrossRef]
- Kim, S.K.; Huh, J.H. A study on the improvement of smart grid security performance and blockchain smart grid perspective. Energies 2018, 11, 1973. [Google Scholar] [CrossRef]
- Zhang, L.; Kerrigan, E.C.; Pal, B.C. Optimal communication scheduling in the smart grid. IEEE Trans. Ind. Inform. 2019, 15, 5257–5265. [Google Scholar] [CrossRef]
- Pau, M.; Patti, E.; Barbierato, L.; Estebsari, A.; Pons, E.; Ponci, F.; Monti, A. A cloud-based smart metering infrastructure for distribution grid services and automation. Sustain. Energy Grids Netw. 2018, 15, 14–25. [Google Scholar] [CrossRef]
- De Souza, R.W.R.; Moreira, L.R.; Rodrigues, J.J.; Moreira, R.R.; de Albuquerque, V.H.C. Deploying wireless sensor networks–based smart grid for smart meters monitoring and control. Int. J. Commun. Syst. 2018, 31, e3557. [Google Scholar] [CrossRef]
- Pau, M.; Patti, E.; Barbierato, L.; Estebsari, A.; Pons, E.; Ponci, F.; Monti, A. Design and accuracy analysis of multilevel state estimation based on smart metering infrastructure. IEEE Trans. Instrum. Meas. 2019, 68, 4300–4312. [Google Scholar] [CrossRef]
- Vlasa, I.; Gligor, A.; Dumitru, C.D.; Iantovics, L.B. Smart metering systems optimization for non-technical losses reduction and consumption recording operation improvement in electricity sector. Sensors 2020, 20, 2947. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Negi, R.; Faloutsos, C.; Ilić, M.D. Robust data-driven state estimation for smart grid. IEEE Trans. Smart Grid 2016, 8, 1956–1967. [Google Scholar] [CrossRef]
- England, B.S.; Alouani, A.T. Real time voltage stability prediction of smart grid areas using smart meters data and improved Thevenin estimates. Int. J. Electr. Power Energy Syst. 2020, 122, 106189. [Google Scholar] [CrossRef]
- Ma, K.; Li, Z.; Liu, P.; Yang, J.; Geng, Y.; Yang, B.; Guan, X. Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay. IEEE Internet Things J. 2021, 8, 13343–13354. [Google Scholar] [CrossRef]
- Antony, S.M.; Indu, S.; Pandey, R. An efficient solar energy harvesting system for wireless sensor network nodes. J. Inf. Optim. Sci. 2020, 41, 39–50. [Google Scholar] [CrossRef]
- Sah, D.K.; Amgoth, T. Renewable energy harvesting schemes in wireless sensor networks: A survey. Inf. Fusion 2020, 63, 223–247. [Google Scholar] [CrossRef]
- Tekler, Z.D.; Low, R.; Yuen, C.; Blessing, L. Plug-Mate: An IoT-based occupancy-driven plug load management system in smart buildings. Build. Environ. 2022, 223, 109472. [Google Scholar] [CrossRef]
- Mehdipour Pirbazari, A.; Farmanbar, M.; Chakravorty, A.; Rong, C. Short-term load forecasting using smart meter data: A generalization analysis. Processes 2020, 8, 484. [Google Scholar] [CrossRef]
- Douglin, R.H.; Ituzaro, F.A.; Butler-Purry, K.L. Using smart meter data to improve the performance of overcurrent protective devices in distribution systems with DG. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Vergara, P.P.; Salazar, M.; Mai, T.T.; Nguyen, P.H.; Slootweg, H. A comprehensive assessment of PV inverters operating with droop control for overvoltage mitigation in LV distribution networks. Renew. Energy 2020, 159, 172–183. [Google Scholar] [CrossRef]
- Junior, W.L.R.; Borges, F.A.; Veloso, A.F.d.S.; de AL Rabêlo, R.; Rodrigues, J.J. Low voltage smart meter for monitoring of power quality disturbances applied in smart grid. Measurement 2019, 147, 106890. [Google Scholar] [CrossRef]
- Lo, C.H.; Ansari, N. Alleviating solar energy congestion in the distribution grid via smart metering communications. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 1607–1620. [Google Scholar] [CrossRef]
- Nardelli, P.H.; de Castro Tomé, M.; Alves, H.; de Lima, C.H.; Latva-Aho, M. Maximizing the link throughput between smart meters and aggregators as secondary users under power and outage constraints. Ad Hoc Netw. 2016, 41, 57–68. [Google Scholar] [CrossRef]
- Tureczek, A.M.; Nielsen, P.S. Structured literature review of electricity consumption classification using smart meter data. Energies 2017, 10, 584. [Google Scholar] [CrossRef]
- Yildiz, B.; Bilbao, J.I.; Dore, J.; Sproul, A.B. Recent advances in the analysis of residential electricity consumption and applications of smart meter data. Appl. Energy 2017, 208, 402–427. [Google Scholar] [CrossRef]
- Al Khafaf, N.; Rezaei, A.A.; Amani, A.M.; Jalili, M.; McGrath, B.; Meegahapola, L.; Vahidnia, A. Impact of battery storage on residential energy consumption: An Australian case study based on smart meter data. Renew. Energy 2022, 182, 390–400. [Google Scholar] [CrossRef]
- Kobus, C.B.; Klaassen, E.A.; Mugge, R.; Schoormans, J.P. A real-life assessment on the effect of smart appliances for shifting households’ electricity demand. Appl. Energy 2015, 147, 335–343. [Google Scholar] [CrossRef]
- Haben, S.; Singleton, C.; Grindrod, P. Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Trans. Smart Grid 2015, 7, 136–144. [Google Scholar] [CrossRef]
- Tran, H.Y.; Hu, J.; Pota, H.R. Smart meter data obfuscation with a hybrid privacy-preserving data publishing scheme without a trusted third party. IEEE Internet Things J. 2022, 9, 16080–16095. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, B.; Wang, Y.; Zhang, K.; Wang, H. Secure metering data aggregation with batch verification in industrial smart grid. IEEE Trans. Ind. Inform. 2020, 16, 6607–6616. [Google Scholar] [CrossRef]
- Murthy, S.; Bakar, A.A.; Rahim, F.A.; Ramli, R. A comparative study of data anonymization techniques. In Proceedings of the 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Washington, DC, USA, 27–29 May 2019; pp. 306–309. [Google Scholar]
- Giaconi, G.; Gündüz, D.; Poor, H.V. Smart meter privacy with renewable energy and an energy storage device. IEEE Trans. Inf. Forensics Secur. 2017, 13, 129–142. [Google Scholar] [CrossRef]
- Yen, S.W.; Morris, S.; Ezra, M.A.; Huat, T.J. Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids. Int. J. Electr. Power Energy Syst. 2019, 109, 1–8. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.J.; Gao, W.; Wu, Z. Fault detection, identification, and location in smart grid based on data-driven computational methods. IEEE Trans. Smart Grid 2014, 5, 2947–2956. [Google Scholar] [CrossRef]
- Souhe, F.G.Y.; Boum, A.T.; Ele, P.; Mbey, C.F.; Kakeu, V.J.F. Fault detection, classification and location in power distribution smart grid using smart meters data. J. Appl. Sci. Eng. 2022, 26, 23–34. [Google Scholar]
- Anas, M.; Javaid, N.; Mahmood, A.; Raza, S.; Qasim, U.; Khan, Z.A. Minimizing electricity theft using smart meters in AMI. In Proceedings of the 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Victoria, BC, Canada, 12–14 November 2012; pp. 176–182. [Google Scholar]
- Grigoras, G.; Neagu, B.C. Smart Meter Data-based three-stage algorithm to calculate power and energy losses in low voltage distribution networks. Energies 2019, 12, 3008. [Google Scholar] [CrossRef]
- Yao, D.; Wen, M.; Liang, X.; Fu, Z.; Zhang, K.; Yang, B. Energy theft detection with energy privacy preservation in the smart grid. IEEE Internet Things J. 2019, 6, 7659–7669. [Google Scholar] [CrossRef]
- Jamal, S.; Tan, N.M.; Pasupuleti, J. A Review of Energy Management and Power Management Systems for Microgrid and Nanogrid Applications. Sustainability 2021, 13, 10331. [Google Scholar] [CrossRef]
- Wang, M.; Mu, Y.; Jiang, T.; Jia, H.; Li, X.; Hou, K.; Wang, T. Load curve smoothing strategy based on unified state model of different demand side resources. J. Mod. Power Syst. Clean Energy 2018, 6, 540–554. [Google Scholar] [CrossRef]
- Hui, H.; Ding, Y.; Song, Y.; Rahman, S. Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error. Appl. Energy 2019, 250, 161–174. [Google Scholar] [CrossRef]
- Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zheng, D.; Li, P.; Tian, Y. Privacy-preserving communication and power injection over vehicle networks and 5G smart grid slice. J. Netw. Comput. Appl. 2018, 122, 50–60. [Google Scholar] [CrossRef]
- Huawei. 5G Network Architecture—A High-Level Perspective; Huawei: Shenzhen, China, 2016. [Google Scholar]
- Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [Google Scholar] [CrossRef]
- Zhang, J.; Hasandka, A.; Wei, J.; Alam, S.S.; Elgindy, T.; Florita, A.R.; Hodge, B.M. Hybrid communication architectures for distributed smart grid applications. Energies 2018, 11, 871. [Google Scholar] [CrossRef]
- Mattisson, S. An overview of 5G requirements and future wireless networks: Accommodating scaling technology. IEEE Solid-State Circuits Mag. 2018, 10, 54–60. [Google Scholar] [CrossRef]
- Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C. Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet Things J. 2021, 8, 11891–11915. [Google Scholar] [CrossRef]
- Ghasempour, A. Internet of things in smart grid: Architecture, applications, services, key technologies, and challenges. Inventions 2019, 4, 22. [Google Scholar] [CrossRef]
- Chen, S.; Wen, H.; Wu, J.; Lei, W.; Hou, W.; Liu, W.; Xu, A.; Jiang, Y. Internet of things based smart grids supported by intelligent edge computing. IEEE Access 2019, 7, 74089–74102. [Google Scholar] [CrossRef]
- Saberi, O.; Menes, R. Artificial Intelligence and the Future for Smart Homes; International Finance Corporation: Washington, DC, USA, 2020. [Google Scholar]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- Ali, S.S.; Choi, B.J. State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics 2020, 9, 1030. [Google Scholar] [CrossRef]
- Omitaomu, O.A.; Niu, H. Artificial intelligence techniques in smart grid: A survey. Smart Cities 2021, 4, 548–568. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, S.; Kharb, R.; Ansari, M.F.; Shimmi, S. Adoption of smart grid technologies: An analysis of interactions among barriers. Renew. Sustain. Energy Rev. 2014, 33, 554–565. [Google Scholar] [CrossRef]
- Chamaret, C.; Steyer, V.; Mayer, J.C. “Hands off my meter!” when municipalities resist smart meters: Linking arguments and degrees of resistance. Energy Policy 2020, 144, 111556. [Google Scholar] [CrossRef]
- Tekler, Z.D.; Low, R.; Blessing, L. User perceptions on the adoption of smart energy management systems in the workplace: Design and policy implications. Energy Res. Soc. Sci. 2022, 88, 102505. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, S.; Sidhu, T.; Siva, A. Smart meters for enhancing protection and monitoring functions in emerging distribution systems. Int. J. Electr. Power Energy Syst. 2021, 127, 106626. [Google Scholar] [CrossRef]
- Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Reliable industry 4.0 based on machine learning and IOT for analyzing, monitoring, and securing smart meters. Sensors 2021, 21, 487. [Google Scholar] [CrossRef]
- Hwang, B.G.; Ngo, J.; Teo, J.Z.K. Challenges and strategies for the adoption of smart technologies in the construction industry: The case of Singapore. J. Manag. Eng. 2022, 38, 05021014. [Google Scholar] [CrossRef]
Functionalities | Description |
---|---|
Self-healing capability | The ability of awareness and isolation of operating faults. The capability improves the reliability of the smart grid and provides better service for infrastructure maintenance. |
Consumer participation | Consumers can be actively involved in the smart grid to help balance the supply and demand by changing their energy utilization behaviors. |
Resilience to attacks | Resilience to cyber and physical attacks and natural catastrophes; quick recovery from a disturbance. |
Power quality | Power quality is appropriate for modern society. It includes real-time monitoring and control techniques for diagnosing and solving issues that impact power quality. |
Integration of multiple generation | Integration of multiple distributed renewable energy resources. |
Interactive with the market | The bidirectional communication at various sections of the grid enables a better atmosphere for the power trading market. The prosumers could alter their energy consumption and production by choosing competing services. |
Asset maintenance | Condition-based asset maintenance aiming at minimizing the influence on consumers. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Amani, A.M.; Yu, X.; Jalili, M. Control and Optimisation of Power Grids Using Smart Meter Data: A Review. Sensors 2023, 23, 2118. https://doi.org/10.3390/s23042118
Chen Z, Amani AM, Yu X, Jalili M. Control and Optimisation of Power Grids Using Smart Meter Data: A Review. Sensors. 2023; 23(4):2118. https://doi.org/10.3390/s23042118
Chicago/Turabian StyleChen, Zhiyi, Ali Moradi Amani, Xinghuo Yu, and Mahdi Jalili. 2023. "Control and Optimisation of Power Grids Using Smart Meter Data: A Review" Sensors 23, no. 4: 2118. https://doi.org/10.3390/s23042118