Brain–Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control
Abstract
1. Introduction
2. Materials and Methods
2.1. SSVEP Stimulus Pattern
2.2. EEG Acquisition
2.3. Proposed Algorithms
2.3.1. Power Spectral Density
2.3.2. Relative Power Spectral Density
2.3.3. Feature Extraction and Decision-Making Algorithms
- (1)
- Calibrating and Threshold setting
- (2)
- Feature Extraction:
- (3)
- Decision making
Absolute PSD (C1) | Decisions | Relative PSD (C2) | Decisions |
= 1, | Command 1 | = 1, | Command 1 |
= 2, | Command 2 | = 2, | Command 2 |
= 3, | Command 3 | = 3, | Command 3 |
= 4, | Command 4 | = 4, | Command 4 |
Otherwise, | Command 5 | Otherwise, | Command 5 |
2.4. Command Translation
3. Experiments and Results
3.1. Efficiency of Proposed Visual Stimulus Pattern
3.2. Performance of the Proposed SSVEP-Based BCI for Control Application
4. Discussion
- (1).
- The classification method is a simple algorithm for real-time processing. Using machine learning methods for classification algorithms may improve the efficiency of the proposed relative PSD features. Furthermore, multi-channel EEG signals from the occipital area might improve SSVEP features.
- (2).
- Based on the participants’ comments regarding visual fatigue, the proposed system still suffers from visual fatigue when focusing on the QR code pattern for an extended period.
- (3).
- The proposed system requires monitoring visual fatigue to avoid low accuracy.
- (4).
- Based on the results in Section 3.1, the proposed system may yield high efficiency for electric device control applications.
- (5).
- Employing the proposed system to control an actual wheelchair in a real environment should be tested for practical use.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Abdulkader, S.N.; Atia, A.; Mostafa, M.M. Brain computer interfacing: Applications and challenges. Egypt. Inform. J. 2015, 16, 213–230. [Google Scholar] [CrossRef]
- Mridha, M.F.; Das, S.C.; Kabir, M.M.; Lima, A.A.; Islam, M.R.; Watanobe, Y. Brain-computer interface: Advancement and challenges. Sensors 2021, 21, 5746. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Jamil, N.; Belkacem, A.N.; Ouhbi, S.; Lakas, A. Noninvasive electroencephalography equipment for assistive, adaptive, and rehabilitative brain-computer interfaces: A systematic literature review. Sensors 2021, 21, 4754. [Google Scholar] [CrossRef]
- Lance, B.J.; Kerick, S.E.; Ries, A.J.; Oie, K.S.; McDowell, K. Brain-computer interface technologies in the coming decades. Proc. IEEE 2012, 100, 1585–1599. [Google Scholar] [CrossRef]
- Morshed, B.I.; Khan, A. A brief review of brain signal monitoring technologies for BCI applications: Challenges and prospects. J. Bioeng. Biomed. Sci. 2014, 4, 1. [Google Scholar] [CrossRef]
- Birbaumer, N.; Ramos Murguialday, A.R.; Weber, C.; Montoya, P. Neurofeedback and brain-computer interface: Clinical applications. Int. Rev. Neurobiol. 2009, 86, 107–117. [Google Scholar] [CrossRef]
- Song, Z.; Fang, T.; Ma, J.; Zhang, Y.; Le, S.; Zhan, G.; Zhang, X.; Wang, S.; Li, H.; Lin, Y.; et al. Evaluation and Diagnosis of brain diseases based on non-invasive BCI. In Proceedings of the 9th International Winter Conference in Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 22–24 February 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Chatelle, C.; Chennu, S.; Noirhomme, Q.; Cruse, D.; Owen, A.M.; Laureys, S. Brain-computer interfacing in disorders of consciousness. Brain Inj. 2012, 26, 1510–1522. [Google Scholar] [CrossRef]
- Spataro, R.; Xu, Y.; Xu, R.; Mandalà, G.; Allison, B.Z.; Ortner, R.; Heilinger, A.; La Bella, V.L.; Guger, C. How brain-computer interface technology may improve the diagnosis of the disorders of consciousness: A comparative study. Front. Neurosci. 2022, 16, 959339. [Google Scholar] [CrossRef]
- Maksimenko, V.; Luttjohann, A.; van Heukelum, S.; Kelderhuis, J.; Makarov, V.; Hramov, A.; Koronovskii, A.; van Luijtelaar, G. Brain-computer interface for epileptic seizures prediction and prevention. In Proceedings of the 8th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 26–28 February 2020; pp. 1–5. [Google Scholar]
- Sebastián-Romagosa, M.; Cho, W.; Ortner, R.; Murovec, N.; Von Oertzen, T.V.; Kamada, K.; Allison, B.Z.; Guger, C. Brain Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients-A Feasibility Study. Front. Neurosci. 2020, 14, 591435. [Google Scholar] [CrossRef]
- Huang, L.; Juijtelaar, G. Brain computer interface for epilepsy treatment. In Brain-Computer Interface Systems—Recent Progress and Future Prospects; IntechOpen: London, UK, 2013. [Google Scholar]
- Mane, R.; Chouhan, T.; Guan, C. BCI for stroke rehabilitation: Motor and beyond. J. Neural Eng. 2020, 17, 041001. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Wang, W.; Huang, C.; Xu, Z.; Wang, H.; Jia, J.; Chen, S.; Dong, Y.; Fan, C.; de Albuquerque, V.H.C. An effective fusing approach by combining connectivity network pattern and temporal-spatial analysis for EEG-based BCI rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2264–2274. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, S.; Ko, H. Design and implementation of BCI-based intelligent upper limb rehabilitation robot system. ACM Trans. Internet Technol. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Vourvopoulos, A.; Jorge, C.; Abreu, R.; Figueiredoy, P.; Fernandes, J. Badia, S.B. Efficacy and brain imaging correlates of an immersive motor imagery BCI-driven VR system for upper limb motor rehabilitation: A clinical case report. Front. Hum. Neurosci. 2019, 13, 244. [Google Scholar] [CrossRef]
- Casey, A.; Azhar, H.; Grzes, M.; Sakel, M. BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients. Disabil. Rehabil. Assist. Technol. 2021, 16, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.D.; Rupp, R.; Müller-Putz, G.R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A.; Leeb, R.; et al. Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Front. Neurosci. 2010, 4, 161. [Google Scholar] [CrossRef]
- Tariq, M.; Trivailo, P.M.; Simic, M. EEG-based BCI control schemes for lower-limb assistive-robots. Front. Hum. Neurosci. 2018, 12, 312. [Google Scholar] [CrossRef]
- Padfield, N.; Camilleri, K.; Camilleri, T.; Fabri, S.; Bugeja, M. A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control. Sensors 2022, 22, 5802. [Google Scholar] [CrossRef]
- Cho, J.; Jeong, J.; Shim, K.; Kim, D.; Lee, S. Classification of hand motions within EEG signals for non-invasive BCI-based robot hand control. In Proceedings of the IEEE International Conference on System, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 515–518. [Google Scholar] [CrossRef]
- Alazrai, R.; Alwanni, H.; Daoud, M.I. EEG-based BCI system for decoding finger movements within the same hand. Neurosci. Lett. 2019, 698, 113–120. [Google Scholar] [CrossRef]
- Pattnaik, P.K.; Sarraf, J. Brain computer interface issues on hand movement. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 18–24. [Google Scholar] [CrossRef]
- Minguillon, J.; Lopez-Gordo, M.A.; Pelayo, F. Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomed. Signal Process. Control 2017, 31, 407–418. [Google Scholar] [CrossRef]
- Hu, H.; Liu, Y.; Yue, K.; Wang, Y. Navigation in virtual and real environment using brain computer interface: A progress report. Virtual Real. Intell. Hardw. 2022, 4, 89–114. [Google Scholar] [CrossRef]
- Al-Qaysi, Z.T.; Zaidan, B.B.; Zaidan, A.A.; Suzani, M.S. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations. Comput. Methods Programs Biomed. 2018, 164, 221–237. [Google Scholar] [CrossRef]
- Voznenko, T.I.; Chepin, E.V.; Urvanov, G.A. The control system based on extended BCI for a robotic wheelchair. Procedia Comput. Sci. 2018, 123, 522–527. [Google Scholar] [CrossRef]
- Palumbo, A.; Gramigna, V.; Calabrese, B.; Ielpo, N. Motor-imagery EEG-based BCIs in wheelchair movement and control: A systematic literature review. Sensors 2021, 21, 6285. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, B.; Wang, Y.; Xu, S.; Gao, X. Control of a 7-DOF Robotic Arm System with an SSVEP-Based BCI. Int. J. Neural Syst. 2018, 28, 1850018. [Google Scholar] [CrossRef]
- Trambaiolli, L.R.; Falk, T.H. Hybrid brain-computer interfaces for wheelchair control: A review of existing solutions, their advantages and open challenges. In Smart Wheelchairs and Brain-Computer Interfaces; Diez, P., Ed.; Academic: New York, NY, USA, 2018; Chapter 10; pp. 229–256. [Google Scholar] [CrossRef]
- Xiong, M.; Hotter, R.; Nadin, D.; Patel, J.; Tarrakovsky, S.; Wang, Y.; Patel, H.; Axon, C.; Bosiljevac, H.; Brandenberger, A.; et al. A low-cost, semiautonomous wheelchair is controlled by motor imagery and jaw muscle activation. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetice (SMC), Bari, Italy, 6–9 October 2019; pp. 2180–2185. [Google Scholar]
- Permana, K.; Wijaya, S.K.; Prajitno, P. Controlled wheelchair based on brain computer interface using Neurosky Mindwave Mobile 2. In AIP Conference Proceedings; AIP Publishing LLC: Depok, Indonesia, 2018; Volume 2168, pp. 020022-1–020022-7. [Google Scholar] [CrossRef]
- Eidel, M.; Kübler, A. Wheelchair control in a virtual environment by healthy participants using a P300-BCI based on tactile stimulation: Training effects and usability. Front. Hum. Neurosci. 2020, 14, 265. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Wu, C.J.; Lin, Y.T.; Kuo, Y.C.; Kuo, C.H. Mechatronic implementation and trajectory tracking validation of a BCI-based human-wheelchair interface. In Proceedings of the 8th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November 2020; pp. 304–309. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Z.; Liu, Y.; Jiang, J.; Yin, E.; Zhang, N.; Wang, Z.; Liu, Y.; Wu, X.; Hu, D. Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and P300 potential. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2516–2526. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, S.K.; Liu, Y.H.; Chen, Y.J.; Chen, C.S. An electric wheelchair manipulating system using SSVEP-based BCI system. Biosensors 2022, 12, 772. [Google Scholar] [CrossRef]
- Na, R.; Hu, C.; Sun, Y.; Wang, S.; Zhang, S.; Han, M.; Yin, W.; Zhang, J.; Chen, X.; Zheng, D. An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator. Digit. Signal Process. 2021, 116, 103101. [Google Scholar] [CrossRef]
- Ruhunage, I.; Perera, C.J.; Munasinghe, I.; Lalitharatne, T.D. EEG-SSVEP based brain machine interface for controlling of a wheelchair and home application with Bluetooth localization system. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics, Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 2520–2525. [Google Scholar]
- Punsawad, Y.; Wongsawat, Y. Enhancement of steady-state visual evoked potential-based brain-computer interface systems via a steady-state motion visual stimulus modality. IEEJ Trans. Electr. Electron. Eng. 2017, 12, S89–S94. [Google Scholar] [CrossRef]
- Amiri, S.; Rabbi, A.; Azpinfar, L.; Fazel-Rezait, R. A review of P300, SSVEP, and hybrid P300/SSVEP brain-computer interface System. In Brain-Computer Interface Systems—Recent Progress and Future Prospects; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Keihani, A.; Shirzhiyan, Z.; Farahi, M.; Shamsi, E.; Mahnam, A.; Makkiabadi, B.; Haidari, M.R.; Jafari, A.H. Use of sine shaped high-frequency rhythmic visual stimuli patterns for SSVEP response analysis and fatigue rate evaluation in normal subjects. Front. Hum. Neurosci. 2018, 12, 201. [Google Scholar] [CrossRef]
- Duart, X.; Quiles, E.; Suay, F.; Chio, N.; García, E.; Morant, F. Evaluating the effect of stimuli color and frequency on SSVEP. Sensors 2020, 21, 117. [Google Scholar] [CrossRef]
- Mu, J.; Grayden, D.B.; Tan, Y.; Oetomo, D. Frequency superposition—A multi-frequency stimulation method in SSVEP-based BCIs. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 26–30 July 2021; pp. 5924–5927. [Google Scholar] [CrossRef]
- Siribunyaphat, N.; Punsawad, Y. Steady-state visual evoked potential-based brain-computer interface using a novel visual stimulus with quick response (QR) code pattern. Sensors 2022, 22, 1439. [Google Scholar] [CrossRef]
- Arlati, S.; Colombo, V.; Ferrigno, G.; Sacchetti, R.; Sacco, M. Virtual reality-based wheelchair simulators: A scoping review. Assist. Technol. 2020, 32, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Makri, D.; Farmaki, C.; Sakkalis, V. Visual fatigue effects on steady state visual evoked potential-based brain computer interfaces. In Proceedings of the 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, D.; Liu, Z.; Liu, M.; Ming, Z.; Liu, T.; Suo, D.; Funahashi, S.; Yan, T. Review of brain-computer interface based on steady-state visual evoked potential. Brain Sci. Adv. 2022, 8, 258–275. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, G.; Zhang, Y.; Liang, R.; Zhang, K.; Du, Y.; Xie, J.; Zhang, S. Anti-fatigue performance in SSVEP-based visual acuity assessment: A comparison of six stimulus paradigms. Front. Hum. Neurosci. 2020, 14, 301. [Google Scholar] [CrossRef]
- Routhier, F.; Archambault, P.S.; Choukou, M.A.; Giesbrecht, E.; Lettre, J.; Miller, W.C. Barriers and facilitators of integrating the miWe immersive wheelchair simulator as a clinical tool for training powered wheelchair-driving skills. Ann. Phys. Rehabil. Med. 2018, 61, e91. [Google Scholar] [CrossRef]
- Carvalho, S.N.; Costa, T.B.S.; Uribe, L.F.S.; Soriano, D.C.; Yared, G.F.G.; Coradine, L.C.; Attux, R. Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. Biomed. Signal Process. Control 2015, 21, 34–42. [Google Scholar] [CrossRef]
- Tiwari, S.; Goel, S.; Bhardwaj, A. MIDNN- a classification approach for the EEG based motor imagery tasks using deep neural network. Appl. Intell. 2022, 52, 4824–4843. [Google Scholar] [CrossRef]
- Ingel, A.; Kuzovkin, I.; Vicente, R. Direct Information Transfer Rate Optimisation for SSVEP-based BCI. J. Neural Eng. 2018, 16, 016016. [Google Scholar] [CrossRef] [PubMed]
- Shahbakhti, M.; Beiramvand, M.; Rejer, I.; Augustyniak, P.; Broniec-Wójcik, A.; Wierzchon, M.; Marozas, V. Simultaneous Eye Blink Characterization and Elimination From Low-Channel Prefrontal EEG Signals Enhances Driver Drowsiness Detection. IEEE J. Biomed. Health Inform. 2022, 26, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Saichoo, T.; Boonbrahm, P.; Punsawad, Y. Investigating User Proficiency of Motor Imagery for EEG-Based BCI System to Control Simulated Wheelchair. Sensors 2022, 22, 9788. [Google Scholar] [CrossRef] [PubMed]
- Saichoo, T.; Boonbrahm, P.; Punsawad, Y. A Face-Machine Interface Utilizing EEG Artifacts from a Neuroheadset for Simulated Wheelchair Control. Int. J. Smart Sens. Intell. Syst. 2021, 14, 1–10. [Google Scholar] [CrossRef]
Authors | BCI Methods | Paradigm and Command | Wheelchair Control | Results |
---|---|---|---|---|
Xiong et al. [33] | MI |
| Actual wheelchair/Assigned control | Accuracy is 60 ± 5% Peak subject accuracy is 82 ± 3% |
Permana et al. [34] | Hybrid MI and Eye motion |
| Actual wheelchair/Independent control | Success rate range: 46.67–82.22% |
Eidel et al. [35] | Somatosensory P300 |
| Virtual wheelchair/Independent control. | Online accuracy 86% |
Chen et al. [36] | VEP P300 |
| Actual wheelchair/Assigned control | Accuracy is 88.2% |
Yu et al. [37] | Hybrid MI and VEP P300 |
| Actual wheelchair/Independent control | Average accuracy: MI: 87.2% P300: 92.6% |
Chen et al. [38] | SSVEP |
| Actual wheelchair/Assigned control | Accuracy in the range of 86.3–98.7% |
Na et al. [39] | SSVEP |
| Actual wheelchair/Assigned control | Average accuracy rate 93.93% |
Ruhunage et al. [40] | Hybrid SSVEP and EOG |
| Actual wheelchair/Assigned control | SSVEP accuracy is 84.5% Double blink accuracy is 100% |
Punsawad et al. [41] | Hybrid SSVEP and Motion VEP |
| Actual wheelchair/Independent control | Average accuracy is 85.6% |
SSVEP Stimulus Pattern | Flicker Frequencies | |
---|---|---|
Fundamental | Harmonics | |
1 | 5 Hz | 10 Hz |
2 | 6 Hz | 12 Hz |
3 | 7 Hz | 14 Hz |
4 | 8 Hz | 16 Hz |
Commands | The Target of Flicker Frequency | Wheelchair Control |
---|---|---|
1 | 5 Hz | Turn Right |
2 | 6 Hz | Forward |
3 | 7 Hz | Backward |
4 | 8 Hz | Turn Left |
5 | - | Idle |
Sequence | Wheelchair Control | Sequence | Wheelchair Control |
---|---|---|---|
1 | Turn Left | 5 | Turn Right |
2 | Turn Right | 6 | Turn Left |
3 | Forward | 7 | Backward |
4 | Backward | 8 | Forward |
SSVEP Features | Average Classification Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|
Absolute PSD | Relative PSD (Proposed) | |||||||
Visual Stimulus Patterns and Flickers | Checkerboard | QR Code | Checkerboard | QR Code | ||||
Participants | Single | Mixture | Single | Mixture | Single | Mixture | Single | Mixture |
1 | 75.0 | 79.2 | 70.8 | 85.4 | 81.3 | 85.4 | 83.3 | 91.7 |
2 | 72.9 | 79.2 | 75 | 81.3 | 83.3 | 85.4 | 85.4 | 87.5 |
3 | 72.9 | 77.1 | 70.8 | 77.1 | 87.5 | 85.4 | 81.3 | 89.6 |
4 | 75.0 | 81.3 | 70.8 | 83.3 | 83.3 | 91.7 | 85.4 | 95.8 |
5 | 70.8 | 75.0 | 70.8 | 79.2 | 79.2 | 87.5 | 81.3 | 89.6 |
6 | 75.0 | 77.1 | 77.1 | 81.3 | 85.4 | 89.6 | 85.4 | 93.8 |
7 | 70.8 | 72.9 | 77.1 | 81.3 | 81.3 | 83.3 | 87.5 | 95.8 |
8 | 72.9 | 77.1 | 75 | 83.3 | 77.1 | 79.2 | 81.3 | 85.4 |
9 | 75.0 | 81.3 | 77.1 | 81.3 | 83.3 | 85.4 | 87.5 | 91.7 |
10 | 75.0 | 75.0 | 75 | 75.0 | 83.3 | 85.4 | 85.4 | 93.8 |
11 | 75.0 | 77.1 | 77.1 | 79.2 | 81.3 | 87.5 | 83.3 | 93.8 |
12 | 72.9 | 77.1 | 75 | 79.2 | 81.3 | 87.5 | 85.4 | 95.8 |
Mean ± SD. | 73.6 ± 1.62 | 77.4 ± 2.49 | 74.3 ± 2.71 | 80.6 ± 2.86 | 82.3 ± 2.74 | 86.1 ± 2.26 | 84.4 ± 3.12 | 92.0 ± 3.42 |
ITR (bpm) | 12.7 ± 0.0 | 13.9 ± 2.8 | 12.7 ± 0.0 | 17.0 ± 3.6 | 18.9 ± 2.8 | 19.5 ± 2.0 | 20.1 ± 0.0 | 26.1 ± 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siribunyaphat, N.; Punsawad, Y. Brain–Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control. Sensors 2023, 23, 2069. https://doi.org/10.3390/s23042069
Siribunyaphat N, Punsawad Y. Brain–Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control. Sensors. 2023; 23(4):2069. https://doi.org/10.3390/s23042069
Chicago/Turabian StyleSiribunyaphat, Nannaphat, and Yunyong Punsawad. 2023. "Brain–Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control" Sensors 23, no. 4: 2069. https://doi.org/10.3390/s23042069
APA StyleSiribunyaphat, N., & Punsawad, Y. (2023). Brain–Computer Interface Based on Steady-State Visual Evoked Potential Using Quick-Response Code Pattern for Wheelchair Control. Sensors, 23(4), 2069. https://doi.org/10.3390/s23042069