High-Efficiency Wireless-Power-Transfer System Using Fully Rollable Tx/Rx Coils and Metasurface Screen
Abstract
:1. Introduction
2. Design and Analysis of the Rollable MS-Based WPT System
2.1. Design and Analysis of the Rollable WPT
2.2. Design and Analysis of the Rollable MS Screen
2.3. Equivalent Circuit Model of the Proposed Rollable MS-Based WPT System
2.4. Magnetic Field Distribution Analysis of the Rollable MS-Based WPT System
3. Measurement Results
3.1. Measurement of PTE
3.2. PTE Measurement of the Misaligned Rollable MS-Based WPT
3.3. Measurement Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, W.; Lee, C.K.; Hui, S.Y.R. General A is on the Use of Tesla’s Resonators in Domino Forms for Wireless Power Transfer. IEEE Trans. Ind. Electron. 2013, 60, 261–270. [Google Scholar] [CrossRef]
- Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science 2007, 317, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Yoon, Y.-K. Wireless Power Transfer Systems Using Metamaterials: A Review. IEEE Access 2020, 8, 147930–147947. [Google Scholar] [CrossRef]
- Padilla, W.J.; Basov, D.N.; Smith, D.R. Negative Refractive Index Metamaterials. Mater. Today 2006, 9, 28–35. [Google Scholar] [CrossRef]
- Wang, B.; Teo, K.H.; Nishino, T.; Yerazunis, W.; Barnwell, J.; Zhang, J. Experiments on Wireless Power Transfer with Metamaterials. Appl. Phys. Lett. 2011, 98, 254101. [Google Scholar] [CrossRef]
- Ranaweera, A.L.A.K.; Duong, T.P.; Lee, J.-W. Experimental Investigation of Compact Metamaterial for High Efficiency Mid-Range Wireless Power Transfer Applications. J. Appl. Phys. 2014, 116, 043914. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, S.; Kim, D.-H.; Kim, H.; Song, C.; Kong, S.; Park, J.; Seo, C.; Kim, J. Thin Hybrid Metamaterial Slab with Negative and Zero Permeability for High Efficiency and Low Electromagnetic Field in Wireless Power Transfer Systems. IEEE Trans. Electromagn. Compat. 2018, 60, 1001–1009. [Google Scholar] [CrossRef]
- Brizi, D.; Stang, J.P.; Monorchio, A.; Lazzi, G. A Compact Magnetically Dispersive Surface for Low-Frequency Wireless Power Transfer Applications. IEEE Trans. Antennas Propag. 2020, 68, 1887–1895. [Google Scholar] [CrossRef]
- Zeng, Y. Analysis and Design of Asymmetric Mid-Range Wireless Power Transfer System with Metamaterials. Energies 2021, 14, 1348. [Google Scholar] [CrossRef]
- Gamez Rodriguez, E.S.; RamRakhyani, A.K.; Schurig, D.; Lazzi, G. Compact Low-Frequency Metamaterial Design for Wireless Power Transfer Efficiency Enhancement. IEEE Trans. Microw. Theory Tech. 2016, 64, 1644–1654. [Google Scholar] [CrossRef]
- Shan, D.; Wang, H.; Cao, K.; Zhang, J. Wireless Power Transfer System with Enhanced Efficiency by Using Frequency Reconfigurable Metamaterial. Sci. Rep. 2022, 12, 331. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Yuan, J.; Li, J.; Cao, L. Long-distance and anti-disturbance wireless power transfer based on concentric three-coil resonator and inhomogeneous electromagnetic metamaterials. Int. J. Circ. Theor. Appl. 2023, 1–16. [Google Scholar] [CrossRef]
- Lee, W.; Yoon, Y.-K. Tunable Metamaterial Slab for Efficiency Improvement in Misaligned Wireless Power Transfer. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 912–915. [Google Scholar] [CrossRef]
- Lee, W.; Yoon, Y.-K. Rollable Metamaterial Screen for Magnetic Resonance Coupling-Based High-Efficiency Wireless Power Transfer. Int. J. Microw. Wirel. Technol. 2021, 13, 365–373. [Google Scholar] [CrossRef]
- Hao, T.; Stevens, C.J.; Edwards, D.J. Optimization of Metamaterials by Q Factor. Electron. Lett. 2005, 41. [Google Scholar]
- Smith, D.R.; Schultz, S.; Markoš, P.; Soukoulis, C.M. Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients. Phys. Rev. B Condens. Matter 2002, 65, 195104. [Google Scholar] [CrossRef]
- Smith, D. Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top 2005, 71, 036617. [Google Scholar] [CrossRef]
- Chen, X.; Grzegorczyk, T.M.; Wu, B.-I.; Pacheco, J., Jr.; Kong, J.A. Robust Method to Retrieve the Constitutive Effective Parameters of Metamaterials. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2004, 70 Pt 2, 016608. [Google Scholar] [CrossRef]
- Sample, A.P.; Meyer, D.A.; Smith, J.R. Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer. IEEE Trans. Ind. Electron. 2011, 58, 544–554. [Google Scholar] [CrossRef]
- Duong, T.P.; Lee, J. Experimental Results of High-Efficiency Resonant Coupling Wireless Power Transfer Using a Var-Iable Coupling Method. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 442–444. [Google Scholar] [CrossRef]
- Ramrakhyani, A.K.; Mirabbasi, S.; Chiao, M. Design and Optimization of Resonance-Based Efficient Wireless Power Delivery Systems for Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 48–63. [Google Scholar] [CrossRef]
- Tahar, F.; Saad, R.; Barakat, A.; Pokharel, R.K. 1.06 FoM and Compact Wireless Power Transfer System Using Rectangular Defected Ground Structure Resonators. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 1025–1027. [Google Scholar] [CrossRef]
Parameter | Value (mm) |
---|---|
LT | 180 |
DT | 163 |
WT | 7 |
G1 | 5 |
G2 | 3 |
DM | 140 |
LM | 150 |
LS | 300 |
GM | 3 |
WM | 7 |
Ref. | Working Frequency (MHz) | Property of MTM | Thickness of the Tx, Rx/MTM (mm) | Planar/Rollable | Configuration of the MTM/# of slabs | Transfer Distance (mm) | Normalized Transfer Distance | PTE with MTM (%) | Figure of Merit | |
---|---|---|---|---|---|---|---|---|---|---|
[5] | 27 | 400 | >2/1.64 | ☓/☓ | Double sided/2 | 500 | 1.25 | 47 | 0.59 | |
[6] | 6.5 | 600 | 4/1.2 | ☓/☓ | Single sided/2 | 1000 | 1.67 | 45 | 0.75 | |
[7] | 7.43 | 150 | 1.6/1.6 | ○/☓ | Double sided/1 | 200 | 1.33 | 18.6 | 0.25 | |
[8] | 6.06 | 42 | 1.2/1.2 | ○/☓ | Single sided/2 | 27 | 0.64 | 12.27 | 0.08 | |
[9] | 5.57 | 40 | -/26 | ☓/☓ | 3D structure/1 | 40 | 1 | 35 | 0.35 | |
[9] | 3 | 500 | 160/>1.6 | ☓/☓ | Single sided/2 | 1200 | 2.4 | 49.63 | 1.19 | |
[10] | 15 | 110 | 5.57/5.57 | ☓/☓ | Single sided/1 | 120 | 1.09 | 72 | 0.78 | |
[12] | 8 | 700, 300 | ~ 1.5 | 90, 300/96 | ☓/☓ | 3D structure/1 | 1200 | 2.62 | 52.05 | 1.36 |
[14] | 4.5 | 600 | 3.588/0.16 | ☓/☓ | Single sided/1 | 900 | 1.5 | 63.04 | 0.95 | |
This work | 6.78 | 163 | 0.16/0.16 | ○/○ | Single sided/1 | 400 | 2.45 | 32.49 | 0.92 | |
Single sided/2 | 500 | 3.07 | 42.25 | 1.3 | ||||||
Single sided/3 | 600 | 3.68 | 49 | 2.21 | ||||||
Single sided/4 | 700 | 4.29 | 46.24 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.; Yoon, Y.-K. High-Efficiency Wireless-Power-Transfer System Using Fully Rollable Tx/Rx Coils and Metasurface Screen. Sensors 2023, 23, 1972. https://doi.org/10.3390/s23041972
Lee W, Yoon Y-K. High-Efficiency Wireless-Power-Transfer System Using Fully Rollable Tx/Rx Coils and Metasurface Screen. Sensors. 2023; 23(4):1972. https://doi.org/10.3390/s23041972
Chicago/Turabian StyleLee, Woosol, and Yong-Kyu Yoon. 2023. "High-Efficiency Wireless-Power-Transfer System Using Fully Rollable Tx/Rx Coils and Metasurface Screen" Sensors 23, no. 4: 1972. https://doi.org/10.3390/s23041972