Strategy for Non-Orthogonal Multiple Access and Performance in 5G and 6G Networks
Abstract
:1. Introduction
2. Objective of the NOMA Conception
3. NOMA Code-Separated Techniques
3.1. Development of NOMA Technology
3.2. Low-Density Spreading by CDMA Technology
4. Code Division with Processing
5. MA with Code Separation
5.1. Individual Code Sequences for Traditional 5G Modulation Subscribers
5.2. Implementing Belch Sequences in NOMA Models
5.3. Grassmannian-Sequence-Based NOMA Protocols Founded on the Generalized Welch Equality
5.4. Sequence-Based NOMA Schemes with Reconfigured Modulation Based on Sparse Templates
5.5. A Character-Level Extension and Scrambling Implementation of a NOMA System
5.6. Character-Level NOMA Scheme with Zero-Adding Interleaving
6. Characteristics of the Methodology of Implementing NOMA Schemes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Göken, Ç.; Yılmaz, A.; Dizdar, O. Evaluation of 5G new radio non-orthogonal multiple access methods for military applications. arXiv 2018, arXiv:180501125. [Google Scholar]
- Akhtar, M.W. Signal Processing Design and Performance Enhancement Techniques for Non-Orthogonal Multiple Access (NOMA). Ph.D. Thesis, National University of Sciences and Technology, Islamabad, Pakistan, 2021. Available online: http://ipt.seecs.nust.edu.pk/wp-content/uploads/2021/09/Waseem_PhD_Thesis_2021_compressed.pdf. (accessed on 18 September 2022).
- Pateriya, P.; Singhai, R.; Shukla, P. Investigation of The Linear Dispersion Coding Scheme and Non-Orthogonal Multiple Access Technology for the 5g Communication Network. Nveo-Nat. Volatiles Essent OILS J.|NVEO 2021, 8, 4828–4845. [Google Scholar]
- Dani, M.N.P.D.H. Non-Orthogonal Multiple Access (NOMA) in Content Centric Mobile Networks; The University of Manchester (United Kingdom): Manchester, UK, 2021. [Google Scholar]
- Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE J. Sel. Areas Commun. 2017, 35, 2181–2195. [Google Scholar] [CrossRef]
- Akbar, A.; Jangsher, S.; Bhatti, F.A. NOMA and 5G emerging technologies: A survey on issues and solution techniques. Comput. Netw. 2021, 190, 107950. [Google Scholar] [CrossRef]
- Melhem, S.B. Design and Analysis of Non-Orthogonal Multiple Access Techniques for Terahertz Networks. 2022. Available online: http://130.63.180.190/xmlui/bitstream/handle/10315/39575/Sadeq_Bani_Melhem_E_2022_MASc_Final.pdf?sequence=2&isAllowed=y. (accessed on 18 September 2022).
- Liu, W.; Hou, X.; Chen, L. Enhanced uplink non-orthogonal multiple access for 5G and beyond systems. Front. Inf. Technol. Electron. Eng. 2018, 19, 340–356. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, N. Density-Based Spatial Clustering of Applications with Noise for Modulation Order Blind-Detection in Non-Orthogonal Multiple Access. In Proceedings of the 2021 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 10–13 December 2021; pp. 136–141. [Google Scholar]
- Yang, Z.; Xu, P.; Hussein, J.A.; Wu, Y.; Ding, Z.; Fan, P. Adaptive power allocation for uplink non-orthogonal multiple access with semi-grant-free transmission. IEEE Wirel Commun. Lett. 2020, 9, 1725–1729. [Google Scholar] [CrossRef]
- Wan, D.; Wen, M.; Cheng, X.; Mumtaz, S.; Guizani, M. A promising non-orthogonal multiple access based networking architecture: Motivation, conception, and evolution. IEEE Wirel Commun. 2019, 26, 152–159. [Google Scholar] [CrossRef]
- Chen, Y.; Bayesteh, A.; Wu, Y.; Ren, B.; Kang, S.; Sun, S.; Xiong, Q.; Qian, C.; Yu, B.; Ding, Z.; et al. Toward the standardization of non-orthogonal multiple access for next generation wireless networks. IEEE Commun. Mag. 2018, 56, 19–27. [Google Scholar] [CrossRef]
- Zia, M.F.; Hamamreh, J.M. An advanced non-orthogonal multiple access security technique for future wireless communication networks. RS Open J. Innov. Commun. Technol. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Srivastava, S.; Dash, P.P. Non-Orthogonal Multiple Access: Procession towards B5G and 6G. In Proceedings of the 2021 IEEE 2nd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC), Odisha, India, 26–28 November 2021; pp. 1–4. [Google Scholar]
- Zou, X.; He, B.; Jafarkhani, H. An analysis of two-user uplink asynchronous non-orthogonal multiple access systems. IEEE Trans. Wirel Commun. 2019, 18, 1404–1418. [Google Scholar] [CrossRef]
- Qian, L.; Wu, Y.; Ouyang, J.; Shi, Z.; Lin, B.; Jia, W. Latency optimization for cellular assisted mobile edge computing via non-orthogonal multiple access. IEEE Trans. Veh Technol. 2020, 69, 5494–5507. [Google Scholar] [CrossRef]
- Chen, X.; Jia, R.; Ng, D.W.K. The application of relay to massive non-orthogonal multiple access. IEEE Trans. Commun. 2018, 66, 5168–5180. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Nguyen, T.-V.; Vu, T.-H.; da Costa, D.B.; Ho, C.D. IoT-based coordinated direct and relay transmission with non-orthogonal multiple access. IEEE Wirel Commun. Lett. 2020, 10, 503–507. [Google Scholar] [CrossRef]
- Lv, L.; Jiang, H.; Ding, Z.; Ye, Q.; Al-Dhahir, N.; Chen, J. Secure non-orthogonal multiple access: An interference engineering perspective. IEEE Netw. 2020, 35, 278–285. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, K.H.; Liu, Y.; Teh, K.C.; Karagiannidis, G.K. Non-orthogonal multiple access (NOMA) with multiple intelligent reflecting surfaces. IEEE Trans. Wirel Commun. 2021, 20, 7184–7195. [Google Scholar] [CrossRef]
- Zhai, D.; Zhang, R.; Cai, L.; Yu, F.R. Delay minimization for massive Internet of Things with non-orthogonal multiple access. IEEE J. Sel. Top Signal Process. 2019, 13, 553–566. [Google Scholar] [CrossRef]
- Stoica, R.-A.; De Abreu, G.T.F.; Hara, T.; Ishibashi, K. Massively concurrent non-orthogonal multiple access for 5G networks and beyond. IEEE Access. 2019, 7, 82080–82100. [Google Scholar] [CrossRef]
- Shankar, R. Examination of a non-orthogonal multiple access scheme for next generation wireless networks. J. Def. Model Simul. 2022, 19, 453–465. [Google Scholar] [CrossRef]
- He, Q.; Hu, Y.; Schmeink, A. Closed-form symbol error rate expressions for non-orthogonal multiple access systems. IEEE Trans. Veh Technol. 2019, 68, 6775–6789. [Google Scholar] [CrossRef]
- Kazmi, S.M.A.; Tran, N.H.; Ho, T.M.; Manzoor, A.; Niyato, D.; Hong, C.S. Coordinated device-to-device communication with non-orthogonal multiple access in future wireless cellular networks. IEEE Access. 2018, 6, 39860–39875. [Google Scholar] [CrossRef]
- Tuan, H.D.; Nasir, A.A.; Nguyen, H.H.; Duong, T.Q.; Poor, H.V. Non-orthogonal multiple access with improper Gaussian signaling. IEEE J. Sel. Top Signal Process. 2019, 13, 496–507. [Google Scholar] [CrossRef]
- Luo, Q.; Gao, P.; Liu, Z.; Xiao, L.; Mheich, Z.; Xiao, P.; Maaref, A. An error rate comparison of power domain non-orthogonal multiple access and sparse code multiple access. IEEE Open J. Commun. Soc. 2021, 2, 500–511. [Google Scholar] [CrossRef]
- Ding, Z.; Fan, P.; Poor, H.V. Impact of non-orthogonal multiple access on the offloading of mobile edge computing. IEEE Trans. Commun. 2018, 67, 375–390. [Google Scholar] [CrossRef]
- Chen, X.; Jia, R.; Ng, D.W.K. On the design of massive non-orthogonal multiple access with imperfect successive interference cancellation. IEEE Trans. Commun. 2018, 67, 2539–2551. [Google Scholar] [CrossRef]
- Al Amin, A.; Shin, S.Y. Channel capacity analysis of non-orthogonal multiple access with OAM-MIMO system. IEEE Wirel Commun. Lett. 2020, 9, 1481–1485. [Google Scholar] [CrossRef]
- Liaqat, M.; Noordin, K.A.; Abdul Latef, T.; Dimyati, K. Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: An overview. Wirel Netw. 2020, 26, 181–203. [Google Scholar] [CrossRef]
- Islam, S.M.; Zeng, M.; Dobre, O.A.; Kwak, K.-S. Non-orthogonal multiple access (NOMA): How it meets 5G and beyond. arXiv 2019, arXiv:190710001. [Google Scholar]
- Baghani, M.; Parsaeefard, S.; Derakhshani, M.; Saad, W. Dynamic non-orthogonal multiple access and orthogonal multiple access in 5G wireless networks. IEEE Trans. Commun. 2019, 67, 6360–6373. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Chen, Y.; Poor, H.V. RIS enhanced massive non-orthogonal multiple access networks: Deployment and passive beamforming design. IEEE J. Sel. Areas Commun. 2020, 39, 1057–1071. [Google Scholar] [CrossRef]
- Yang, G.; Xu, X.; Liang, Y.-C.; Di Renzo, M. Reconfigurable intelligent surface-assisted non-orthogonal multiple access. IEEE Trans. Wirel Commun. 2021, 20, 3137–3151. [Google Scholar] [CrossRef]
- Yang, G.; Xu, X.; Liang, Y.-C. Intelligent reflecting surface assisted non-orthogonal multiple access. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Vaezi, M.; Schober, R.; Ding, Z.; Poor, H.V. Non-orthogonal multiple access: Common myths and critical questions. IEEE Wirel Commun. 2019, 26, 174–180. [Google Scholar] [CrossRef]
- Yan, X.; An, K.; Liang, T.; Zheng, G.; Ding, Z.; Chatzinotas, S.; Liu, Y. The application of power-domain non-orthogonal multiple access in satellite communication networks. IEEE Access 2019, 7, 63531–63539. [Google Scholar] [CrossRef]
- Shahab, M.B.; Abbas, R.; Shirvanimoghaddam, M.; Johnson, S.J. Grant-free non-orthogonal multiple access for IoT: A survey. IEEE Commun. Surv. Tutor. 2020, 22, 1805–1838. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A survey of non-orthogonal multiple access for 5G. IEEE Commun. Surv. Tutor. 2018, 20, 2294–2323. [Google Scholar] [CrossRef] [Green Version]
No. of Sequences | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Sequence count down | 1 | −0.661 + 0.101i | −0.122 + 0.521i | 0.526 − 0.428i | 0.291 − 0.523i |
2 | 0.096 + 0.582i | −0.432 − 0.095i | 0.254 − 0.323i | 0.621 + 0.254i | |
3 | −0.432 − 0.291i | −0.583 + 0.382i | −0.391 − 0.167i | −0.591 − 0.342i | |
4 | −0.218 + 0.362i | 0.482 + 0.241i | 0.620 − 0.091i | −0.494 + 0.014i | |
No. of Sequences | 5 | 6 | 7 | 8 | |
Sequence count down | 1 | −0.572 − 0.214i | −0.341 + 0.125i | 0.421 + 0.118i | 0.470 + 0.213i |
2 | 0.061 − 0.644i | 0.367 − 0.143i | −0.024 − 0.561i | 0.048 − 0.424i | |
3 | 0.353 − 0.288i | 0.651 − 0.066i | −0.450 + 0.098i | 0.407 + 0.160i | |
4 | −0.107 − 0.461i | 0.217 + 0.486i | −0.516 + 0.111i | −0.490 + 0.362i |
TSC | ||
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dulaimi, O.M.K.; Al-Dulaimi, A.M.K.; Alexandra, M.O.; Al-Dulaimi, M.K.H. Strategy for Non-Orthogonal Multiple Access and Performance in 5G and 6G Networks. Sensors 2023, 23, 1705. https://doi.org/10.3390/s23031705
Al-Dulaimi OMK, Al-Dulaimi AMK, Alexandra MO, Al-Dulaimi MKH. Strategy for Non-Orthogonal Multiple Access and Performance in 5G and 6G Networks. Sensors. 2023; 23(3):1705. https://doi.org/10.3390/s23031705
Chicago/Turabian StyleAl-Dulaimi, Omer Mohammed Khodayer, Aymen Mohammed Khodayer Al-Dulaimi, Maiduc Osiceanu Alexandra, and Mohammed Khodayer Hassan Al-Dulaimi. 2023. "Strategy for Non-Orthogonal Multiple Access and Performance in 5G and 6G Networks" Sensors 23, no. 3: 1705. https://doi.org/10.3390/s23031705
APA StyleAl-Dulaimi, O. M. K., Al-Dulaimi, A. M. K., Alexandra, M. O., & Al-Dulaimi, M. K. H. (2023). Strategy for Non-Orthogonal Multiple Access and Performance in 5G and 6G Networks. Sensors, 23(3), 1705. https://doi.org/10.3390/s23031705