Mechanochemical Synthesis of TiO2-CeO2 Mixed Oxides Utilized as a Screen-Printed Sensing Material for Oxygen Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanochemical Synthesis of TiO2-CeO2 Powders
2.1.1. Particle Size Distribution Analysis
2.1.2. X-ray Powder Diffraction
2.2. TiO2-CeO2 Paste Preparation and Sensor Fabrication
2.2.1. Optical Microscopy
2.2.2. Scanning Electron Microscopy of a Film Surface
2.2.3. Atomic Force Microscopy
2.2.4. Film Profilometry
2.2.5. Raman Spectroscopy
3. Results of Electrical Measurements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sekereci, Y.; Petrovskii, S. Global Warming Can Lead to Depletion of Oxygen by Disrupting Phytoplankton Photosynthesis: A Mathematical Modelling Approach. Geosciences 2018, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Saruhan, B.; Fomekong, R.L.; Nahirniak, S. Review: Influences of Semiconductor Metal Oxide Properties on Gas Sensing Characteristics. Front. Sens. 2021, 2, 657391. [Google Scholar] [CrossRef]
- Manandhar, S.; Battu, A.K.; Deveraj, A.; Shuttanandan, V.; Thevuthasan, S.; Ramana, C.V. Rapid Response High Temperature Oxygen Sensor Based on Titanium Doped Gallium Oxide. Sci. Rep. 2020, 10, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Parisi, J.; Sun, X.; Lei, Y. Solid-state gas sensors for high temperature applications-A Review. J. Mater. Chem. A 2014, 2, 9919–9943. [Google Scholar] [CrossRef]
- Wang, X.; Wolfbeis, O.S. Optical methods for sensing and imaging oxygen: Materials, spectroscopies and applications. Chem. Soc. Rev. 2014, 43, 3666–3761. [Google Scholar] [CrossRef] [Green Version]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Santonico, M.; Zompanti, A.; Sabatini, A.; Vollero, L.; Grasso, S.; Mezza, C.D.; Pennazza, G. CO2 and O2 Detection by Electric Field Sensors. Sensors 2020, 20, 668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem. 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Raghu, A.V.; Karuppana, K.K.; Pullithadathi, B. Highly Sensitive, Temperature-Independent Oxygen Gas Sensor Based on Anatase TiO2 Nanoparticle Grafted, 2D Mixed Valent VOx Nanoflakelets. ACS Sens. 2018, 3, 1811–1821. [Google Scholar] [CrossRef]
- Mele, G.; Sole, R.D.; Lü, X. 18-Applications of TiO2 in sensor devices. In Titanium Dioxide (TiO2) and Its Applications, 1st ed.; Korotcenkov, G., Parrino, F., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 527–572. [Google Scholar]
- Aneggi, E.; Leitenburg, C.D.; Boaro, M.; Fornasiero, P.; Trovarelli, A. 3-Catalytic Application of cerium dioxide. In Cerium Oxide (CeO2): Synthesis, Properties and Applications, 1st ed.; Korotcenkov, G., Scirè, S., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–108. [Google Scholar]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, T. An overview: Facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators B Chem. 2018, 277, 604–633. [Google Scholar] [CrossRef]
- Al-Hashem, M.; Akbar, S.; Morris, P. Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sens. Actuators B Chem. 2019, 301, 126845. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, T.; Li, G.; Ying, Q. Influence of Thickness on Oxygen-Sensing Properties of TiO2 Thin Films on Al2O3. Jpn. J. Appl. Phys. 2002, 41, 4655–4658. [Google Scholar] [CrossRef]
- Jasinski, P.; Suzuki, T.; Anderson, H.U. Nanocrystalline undoped ceria oxygen sensor. Sens. Actuators B Chem. 2003, 95, 73–77. [Google Scholar] [CrossRef]
- Rotchschlid, A.; Edelman, F.; Komem, Y.; Cosandey, F. Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sens. Actuators B Chem. 2000, 67, 282–289. [Google Scholar] [CrossRef]
- Yang, S.; Lei, G.; Xu, H.; Lan, Z.; Wang, Z.; Gu, G. Metal Oxide Based Heterojunction for Gas Sensor: A review. Nanomaterials 2021, 11, 1026. [Google Scholar] [CrossRef]
- Watanabe, S.; Ma, X.; Song, C. Characterization of Structural and Surface Properties of Nanocrystalline TiO2-CeO2 Mixed Oxides by XRD, XPS, TPR, and TPD. J. Phys. Chem. C 2009, 113, 14249–14257. [Google Scholar] [CrossRef]
- Zeng, Y.; Haw, K.G.; Wang, Y.; Zhang, S.; Wang, Z.; Zhong, Q.; Kawi, S. Recent Progress of CeO2-TiO2 Based Catalysts for Selective Catalytic Reduction of NOx by NH3. ChemCatChem 2021, 13, 491–505. [Google Scholar] [CrossRef]
- Gionco, C.; Giamello, E.; Mino, L.; Paganini, M.C. The interaction of oxygen with the surface of CeO2–TiO2 mixed systems: An example of fully reversible surface-to-molecule electron transfer. Phys. Chem. Chem. Phys 2014, 16, 21438–21445. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.R.; Fray, D.J. Nanostructured TiO2–CeO2 mixed oxides by an aqueous sol–gel process: Effect of Ce:Ti molar ratio on physical and sensing properties. Sens. Actuators B Chem. 2010, 150, 631–640. [Google Scholar] [CrossRef]
- Trinchi, A.; Li, Y.X.; Wlodarski, W.; Kaciulis, S.; Pandolfi, L.; Viticoli, S.; Comini, E.; Sberveglieri, G. Investigation of sol–gel prepared CeO2–TiO2 thin films for oxygen gas sensing. Sens. Actuators B Chem. 2003, 95, 145–150. [Google Scholar] [CrossRef]
- Uzunglu, A.; Zhang, H.; Andreescu, S.; Stanciu, L.A. CeO2-MOx (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity. J. Mater. Sci. 2015, 50, 3750–3762. [Google Scholar] [CrossRef]
- Rožić, L.; Petrović, S.; Lončarević, D.; Grbić, B.; Radić, N.; Stojadinović, S.; Jović, V.; Lamovec, J. Influence of annealing temperature on structural, optical and photocatalytic properties of TiO2-CeO2 nanopowders. Ceram. Int. 2019, 45, 2361–2367. [Google Scholar] [CrossRef]
- Petrović, S.; Rožić, L.; Jović, V.; Stojadinović, S.; Grbić, B.; Radić, N.; Lamovec, J.; Vasilic, R. Optimization of a nanoparticle ball milling process parameters using the response surface method. Adv. Powder Technol. 2018, 29, 2129–2139. [Google Scholar] [CrossRef]
- Petrović, S.; Rožić, L.; Grbić, B.; Radić, N.; Stefanov, P.; Stojadinović, S.; Jović, V.; Lamovec, J. Effect of high energy ball milling on the physicochemical properties of TiO2-CeO2 mixed oxide and its photocatalytic behavior in the oxidation reaction. Reac. Kinet. Mech. Catal. 2019, 127, 175–186. [Google Scholar] [CrossRef]
- Furlani, E.; Aneggi, E.; Leitenburg, C.D.; Maschio, S. High energy ball milling of titania and titania–ceria powder mixtures. Powder Technol. 2014, 254, 591–596. [Google Scholar] [CrossRef]
- Leonardi, M.; Villacampa, M.; Menendez, M. Multicomponent mechanochemical synthesis. Chem. Sci. 2018, 9, 2042–2064. [Google Scholar] [CrossRef] [Green Version]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščič, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef] [Green Version]
- Amrute, A.P.; Bellis, J.D.; Felderhoff, M.; Schüth, F. Mechanochemical Synthesis of Catalytic Materials. Chem. Eur. J. 2021, 27, 6819–6847. [Google Scholar] [CrossRef]
- Szczesniak, B.; Choma, J.; Jaroniec, M. Recent advances in mechanochemical synthesis of mesoporous metal oxides. Mater. Adv. 2021, 2, 2510–2523. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef]
- Balanč, B.; Trifković, K.; Đorđević, V.; Marković, S.; Pjanović, R.; Nedović, V.; Bugarski, B. Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocoll. 2016, 61, 832–842. [Google Scholar] [CrossRef]
- Yuesong, S.; Dahai, Z.; Bo, Y.; Songbo, N.; Shemin, Z. Synergetic catalyst of ceria and titania for selective reduction of NO. J. Rare Earths 2012, 30, 431–436. [Google Scholar] [CrossRef]
- Reddy, B.M.; Khan, A.; Yamada, Y.; Kobayashi, T.; Loridant, S.; Volta, J.C. Structual chararacterization of Structural Characterization of CeO2−MO2 (M = Si4+, Ti4+, and Zr4+) Mixed Oxides by Raman Spectroscopy, X-ray Photoelectron Spectroscopy, and Other Techniques. J. Phys. Chem. B 2003, 107, 11475–11484. [Google Scholar] [CrossRef]
- Matějová, L.; Valeš, V.; Fajgar, R.; Matěj, Z.; Holỳ, V.; Šolcová, O. Reverse micelles directed synthesis of TiO2–CeO2 mixed oxides and investigation of their crystal structure and morphology. J. Solid State Chem. 2013, 198, 485–495. [Google Scholar] [CrossRef]
- Torres-Romero, A.; Cajero-Juárez, M.; Nuñez-Anita, R.E.; Contreras-García, M.E. Ceria-Doped Titania Nanoparticles as Drug Delivery System. J. Nanosci. Nanotechnol. 2020, 20, 3971–3980. [Google Scholar] [CrossRef]
- Dolabella, S.; Borzì, A.; Dommann, A.; Neels, A. Lattice Strain and Defects Analysis in Nanostructured Semiconductor Materials and Devices by High-Resolution X-Ray Diffraction: Theoretical and Practical Aspects. Small Methods 2022, 6, 2100932. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Venkateswalru, K.; Bose, A.C.; Rameshbabu, N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys. B Condens. 2010, 405, 4256–4261. [Google Scholar] [CrossRef]
- Askeland, D.R. Strain Hardening and Annealing. In The Science and Engineering of Materials; Springer: Berlin/Heidelberg, Germany, 1996; pp. 188–215. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Chatel, G.; Colmenares, J.C. Mechanochemical Forces as a Synthetic Tool for Zero- and One-Dimensional Titanium Oxide-Based Nano-photocatalysts. Top. Curr. Chem. 2020, 378, 2. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M.K.; Liska, P.; Péchy, P.; Grätzel, M. Fabrication of Screen -Printing Pastes from TiO2 powders for Dye-Sensitised Solar Cells. Prog. Photovol. Res. Appl. 2007, 15, 603–612. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baró, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siuzdak, K.; Sawczak, M.; Klein, M.; Nowaczyk, G.; Jurgac, S.; Ceniana, A. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water. Phys. Chem. Chem. Phys. 2014, 16, 15199–15206. [Google Scholar] [CrossRef] [PubMed]
- Hanaor, D.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Byrne, C.; Fagan, R.; Hinder, S.; McCormack, D.E.; Pillai, S.C. New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts. RSC Adv. 2016, 6, 95232–95238. [Google Scholar] [CrossRef]
- Hardcastle, F.; Ishihara, H.; Sharma, R.; Boris, A.S. Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen-annealing temperature. J. Mater. Chem. 2011, 21, 6337–6345. [Google Scholar] [CrossRef]
- Suzana, M.; Francisco, P.; Mastelaro, V.R. Inhibition of the Anatase−Rutile Phase Transformation with Addition of CeO2 to CuO−TiO2 System: Raman Spectroscopy, X-ray Diffraction, and Textural Studies. Chem. Mater. 2002, 14, 2514–2518. [Google Scholar] [CrossRef]
- Fiorenza, R.; Bellardita, M.; D’Urso, L.; Compagnini, G.; Palmisano, L.; Scirè, S. Au/TiO2-CeO2 Catalysts for Photocatalytic Water Splitting and VOCs Oxidation Reactions. Catalyst 2016, 6, 121. [Google Scholar] [CrossRef]
- De Castro Silva, I.; Reinaldo, A.C.; Sigoli, F.A.; Mazali, I.O. Reversible Oxygen Vacancies Generation on Pure CeO2 Nanorods Evaluated by in Situ Raman Spectroscopy. J. Phys. Chem. C 2017, 121, 12928–12935. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Z.; Zeng, D.; Xie, C. Metal-oxide-semiconductor based gas sensors: Screening, preparation, and integration. Phys. Chem. Chem. Phys. 2017, 19, 6313–6329. [Google Scholar] [CrossRef] [PubMed]
- Korotcenkov, G.; Cho, B.K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B Chem. 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazoe, N.; Shimanoe, K. Proposal of contact potential promoted oxide semiconductor gas sensor. Sens. Actuators B Chem. 2013, 187, 162–167. [Google Scholar] [CrossRef]
- Mirabella, D.A.; Buono, C.; Aldao, C.M.; Resasco, D.E. Chemisorption and sensitivity at semiconductor sensors revisited. Sens. Actuators B Chem. 2019, 285, 232–239. [Google Scholar] [CrossRef]
- Johnston-Peck, A.C.; Senanayake, S.D.; Plata, J.J.; Kundu, S.; Xu, W.; Barrio, L.; Graciani, J.; Sanz, J.F.; Navarro, R.M.; Fierro, J.L.G.; et al. Nature of the Mixed-Oxide Interface in Ceria−Titania Catalysts: Clusters, Chains, and Nanoparticles. J. Phys. Chem. C 2013, 117, 14463–14471. [Google Scholar] [CrossRef]
- Luo, S.; Nguyen-Phan, T.D.; Johnston-Peck, A.C.; Barrio, L.; Sallis, S.; Arena, D.A.; Kundu, S.; Xu, W.; Piper, L.F.J.; Stach, E.A.; et al. Hierarchical Heterogeneity at the CeOx-TiO2 Interface: Electronic and Geometric Structural Influence on the Photocatalytic Activity of Oxideon Oxide Nanostructures. J. Phys. Chem. C 2015, 119, 2669–2679. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Basic approach to the transducer function of oxide semiconductor gas sensors. Sens. Actuators B Chem. 2011, 160, 1352–1362. [Google Scholar] [CrossRef]
- Buchalska, M.; Kobielusz, M.; Matuszek, A.; Pacia, M.; Wojtyla, S.; Macyk, W. On Oxygen Activation at Rutile- and Anatase-TiO2. ACS Catal. 2015, 5, 7424–7431. [Google Scholar] [CrossRef]
Sample | Mass Ratio (TiO2:CeO2) | Milling Time |
---|---|---|
TiCe-0.8:0.2-40 | 0.8:0.2 | 40 min |
TiCe-0.2:0.8-40 | 0.2:0.8 | 40 min |
TiCe-0.5:0.5-40 | 0.5:0.5 | 40 min |
TiCe-0.8:0.2-100 | 0.8:0.2 | 100 min |
TiCe-0.2:0.8-100 | 0.2:0.8 | 100 min |
TiCe-0.5:0.5-100 | 0.5:0.5 | 100 min |
Sample | d10 [µm] | d50 [µm] | d90 [µm] | Span |
---|---|---|---|---|
TiO2 | 1.25 | 3.70 | 10.61 | 2.532 |
CeO2 | 3.80 | 22.58 | 55.81 | 2.303 |
TiCe-0.8:0.2-40 | 0.96 | 7.88 | 33.79 | 4.166 |
TiCe-0.2:0.8-40 | 0.52 | 6.72 | 29.27 | 4.282 |
TiCe-0.5:0.5-40 | 0.74 | 8.08 | 39.9 | 4.845 |
TiCe-0.8:0.2-100 | 0.80 | 7.97 | 29.56 | 3.609 |
TiCe-0.2:0.8-100 | 0.52 | 5.01 | 18.66 | 3.618 |
TiCe-0.5:0.5-100 | 0.55 | 5.50 | 20.54 | 3.635 |
Sample | Anatase (nm) | Rutile (nm) | Ceria (nm) |
---|---|---|---|
TiCe-0.8:0.2-40 | 20.65 | 27.38 | 46.04 |
TiCe-0.2:0.8-40 | 12.97 | - | 33.32 |
TiCe-0.5:0.5-40 | 17.87 | 33.19 | 41.98 |
TiCe-0.8:0.2-100 | 18.98 | 30.40 | 39.28 |
TiCe-0.2:0.8-100 | - | - | 24.97 |
TiCe-0.5:0.5-100 | 15.93 | 26.86 | 31.25 |
TiO2 | 21.48 | 31.52 | - |
CeO2 | - | - | 49.50 |
Sample | Rutile Weight Fraction |
---|---|
TiCe-0.8:0.2-40 | 0.27 |
TiCe-0.2:0.8-40 | - |
TiCe-0.5:0.5-40 | 0.36 |
TiCe-0.8-0.2-100 | 0.35 |
TiCe-0.2:0.8-100 | - |
TiCe-0.5:0.5-100 | 0.40 |
TiO2 | 0.19 |
Sample | Ra (nm) | Rq (nm) |
---|---|---|
TiCe-0.8:0.2-40 | 420 | 560 |
TiCe-0.2:0.8-40 | 180 | 220 |
TiCe-0.5:0.5-40 | 130 | 170 |
TiCe-0.8:0.2-100 | 190 | 230 |
TiCe-0.2:0.8-100 | 170 | 210 |
TiCe-0.5:0.5-100 | 120 | 140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevanović, J.N.; Petrović, S.P.; Tadić, N.B.; Cvetanović, K.; Silva, A.G.; Radović, D.V.; Sarajlić, M. Mechanochemical Synthesis of TiO2-CeO2 Mixed Oxides Utilized as a Screen-Printed Sensing Material for Oxygen Sensor. Sensors 2023, 23, 1313. https://doi.org/10.3390/s23031313
Stevanović JN, Petrović SP, Tadić NB, Cvetanović K, Silva AG, Radović DV, Sarajlić M. Mechanochemical Synthesis of TiO2-CeO2 Mixed Oxides Utilized as a Screen-Printed Sensing Material for Oxygen Sensor. Sensors. 2023; 23(3):1313. https://doi.org/10.3390/s23031313
Chicago/Turabian StyleStevanović, Jelena N., Srđan P. Petrović, Nenad B. Tadić, Katarina Cvetanović, Ana G. Silva, Dana Vasiljević Radović, and Milija Sarajlić. 2023. "Mechanochemical Synthesis of TiO2-CeO2 Mixed Oxides Utilized as a Screen-Printed Sensing Material for Oxygen Sensor" Sensors 23, no. 3: 1313. https://doi.org/10.3390/s23031313