Circularly Polarized Ultra-Wideband Antenna for Uni-Traveling-Carrier Photodiode Terahertz Source
Abstract
:1. Introduction
2. Theory
3. Design and Validation of a UWB Circularly Polarized Antenna for UTC-PD
3.1. UWB Circularly Polarized Spiral Antenna
3.2. Optimization
3.3. UWB Circularly Polarized Antenna Integrated with Silicon Lens
3.4. Experimental Results
3.5. Comparisons
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, H.J.; Lee, N. Terahertz communications: Challenges in the next decade. IEEE Trans. Terahertz Sci. Technol. 2021, 12, 105–117. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.-S. Terahertz band: The last piece of RF spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 2019, 1, 1–32. [Google Scholar] [CrossRef]
- Nsengiyumva, W.; Zhong, S.; Zheng, L.; Liang, W.; Wang, B.; Huang, Y.; Chen, X.; Shen, Y. Sensing and non-destructive testing applications of terahertz spectroscopy and imaging systems: State-of-the-art and state-of-the-practice. IEEE Trans. Instrum. Meas. 2023, 72, 1–83. [Google Scholar] [CrossRef]
- Nellen, S.; Ishibashi, T.; Deninger, A.; Kohlhaas, R.B.; Liebermeister, L.; Schell, M.; Globisch, B. Experimental comparison of UTC-and PIN-photodiodes for continuous-wave terahertz generation. J. Infrared Millim. Terahertz Waves 2020, 41, 343–354. [Google Scholar] [CrossRef]
- Furuta, T.; Ito, H.; Ishibashi, T. Photoresponse dynamics of uni-travelling-carrier and conventional pin-photodiodes. In Compound Semiconductors 1999: Proceedings of the Twenty-Sixth International Symposium on Compound Semiconductors, Berlin, Germany, 23–26 August 1999, 2nd ed.; Ploog, K.H., Tränkle, G., Eds.; Institute of Physics: Berlin, Germany, 2000; Volume 166, pp. 419–422. [Google Scholar]
- Williams, K.J.; Esman, R.D.; Dagenais, M. Nonlinearities in pin microwave photodetectors. J. Light. Technol. 1996, 14, 84–96. [Google Scholar] [CrossRef]
- Muramoto, Y.; Ishibashi, T. InP/InGaAs pin photodiode structure maximising bandwidth and efficiency. Electron. Lett. 2003, 39, 1. [Google Scholar] [CrossRef]
- Ishibashi, T.; Furuta, T.; Fushimi, H.; Kodama, S.; Ito, H.; Nagatsuma, T.; Shimizu, N.; Miyamoto, Y. InP/InGaAs uni-traveling-carrier photodiodes. IEICE Trans. Electron. 2000, 83, 938–949. [Google Scholar]
- Ito, H.; Furuta, T.; Kodama, S.; Ishibashi, T. InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth. Electron. Lett. 2000, 36, 1. [Google Scholar] [CrossRef]
- Ishibashi, T.; Kodama, S.; Shimizu, N.S.N.; Furuta, T.F.T. High-speed response of uni-traveling-carrier photodiodes. Jpn. J. Appl. Phys. 1997, 36, 6263. [Google Scholar] [CrossRef]
- Ito, H.; Ishibashi, T. Photonic terahertz-wave generation using slot-antenna-integrated uni-traveling-carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Li, Y.T.; Shi, J.W.; Huang, C.Y.; Chen, N.W.; Chen, S.H.; Chyi, J.I.; Pan, C.L. Characterization of sub-THz photonic-transmitters based on GaAs–AlGaAs uni-traveling-carrier photodiodes and substrate-removed broadband antennas for impulse-radio communication. IEEE Photonics Technol. Lett. 2008, 20, 1342–1344. [Google Scholar] [CrossRef]
- Ito, H.; Furuta, T.; Nakajima, F.; Yoshino, K.; Ishibashi, T. Photonic generation of continuous THz wave using uni-traveling-carrier photodiode. J. Light. Technol. 2005, 23, 4016. [Google Scholar] [CrossRef]
- Ishibashi, T.; Muramoto, Y.; Yoshimatsu, T.; Ito, H. Unitraveling-carrier photodiodes for terahertz applications. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 79–88. [Google Scholar] [CrossRef]
- Ali, M.; Guzmán, R.C.; Muñoz, L.E.G.; Van Dijk, F.; Carpintero, G. E-band photonic transmitter employing high-power UTC-PD and broadband antenna. In Proceedings of the 2019 12th Global Symposium on Millimeter Waves (GSMM), Sendai, Japan, 22–24 May 2019. [Google Scholar]
- Beck, A.; Zaknoune, M.; Peytavit, E.; Akalin, T.; Ducournau, G.; Lampin, J.-F.; Mollot, F.; Hindle, F.; Yang, C.; Mouret, G. Terahertz photomixing in InP/InGaAs UTC-PD integrated with TEM horn antennas. In Proceedings of the 2008 33rd International Conference on Infrared, Pasadena, CA, USA, 15–19 September 2008. [Google Scholar]
- Wun, J.M.; Chen, N.W.; Shi, J.W. THz Photonic Transmitters with Type-II Hybrid Absorber UTC-PDs and Dual-Ridged Horn Antennas for High-Power and Extremely wide Fractional Bandwidth Performances. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018. [Google Scholar]
- Nakajima, F.; Furuta, T.; Ito, H. High-power terahertz-wave generation from a resonant-antenna-integrated uni-traveling-carrier photodiode. In Proceedings of the 2004 IEEE International Topical Meeting on Microwave Photonics (IEEE Cat. No. 04EX859), Ogunquit, ME, USA, 4–6 October 2004. [Google Scholar]
I | II | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
P Electrode | 3 × 15 µm2 | 3 × 15 µm2 | 3 × 15 µm2 | 3 × 25 µm2 | 3 × 25 µm2 | 3 × 25 µm2 |
N Electrode | 15 × 15 µm2 | 15 × 15 µm2 | 15 × 15 µm2 | 15 × 25 µm2 | 15 × 25 µm2 | 15 × 25 µm2 |
GapPN | 4 µm | 5 µm | 6 µm | 4 µm | 5 µm | 6 µm |
Ref. | Antenna Type | Frequency (GHz) | Polarization |
---|---|---|---|
[11] | Short-slot antenna | 900–1600 (56%) | Linearly |
Long-slot antenna | 350–850 (83%) | ||
[14] | Bowtie antenna | 300–2500 (157%) | Linearly |
[13] | Log-periodic antenna | 300–1500 (133%) | Linearly |
This work | Planar spiral antenna | 100–1500 (175%) | 150–720 (131%) Circularly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Nie, C.; Liu, Z.; Zhou, X.; Cheng, X.; Liang, S.; Yao, Y. Circularly Polarized Ultra-Wideband Antenna for Uni-Traveling-Carrier Photodiode Terahertz Source. Sensors 2023, 23, 9398. https://doi.org/10.3390/s23239398
Li Q, Nie C, Liu Z, Zhou X, Cheng X, Liang S, Yao Y. Circularly Polarized Ultra-Wideband Antenna for Uni-Traveling-Carrier Photodiode Terahertz Source. Sensors. 2023; 23(23):9398. https://doi.org/10.3390/s23239398
Chicago/Turabian StyleLi, Qi, Chuang Nie, Zihao Liu, Xin Zhou, Xiaohe Cheng, Song Liang, and Yuan Yao. 2023. "Circularly Polarized Ultra-Wideband Antenna for Uni-Traveling-Carrier Photodiode Terahertz Source" Sensors 23, no. 23: 9398. https://doi.org/10.3390/s23239398
APA StyleLi, Q., Nie, C., Liu, Z., Zhou, X., Cheng, X., Liang, S., & Yao, Y. (2023). Circularly Polarized Ultra-Wideband Antenna for Uni-Traveling-Carrier Photodiode Terahertz Source. Sensors, 23(23), 9398. https://doi.org/10.3390/s23239398