Running Economy in the Vertical Kilometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measurements
2.3.1. Metabolic Data
2.3.2. Calculations
2.4. Statistical Analysis
- Normality testing: the Shapiro–Wilk test was used to assess the normality of the variables.
- Gender and performance level comparison: A T-student parametric test was employed to compare gender and performance level differences. The sample was divided into quartiles based on the final test time, and values from the first quartile were compared to the remaining quartiles.
- Comparison of assessed variables: A two-factor repeated-measures ANOVA was utilized to compare means across multiple analyzed variables. The analysis compared three sections and five positive slopes in each section. Before applying ANOVA, the Mauchly’s sphericity test was performed. If sphericity was rejected, the univariated F-statistic was used, adjusted with the Greenhouse–Geisser correction index. Bonferroni’s post hoc analysis was performed when significant differences were found for pairwise comparison.
- Statistical power and effect size determination: The statistical power (SP) and effect size (partial eta squared, ηp2) were determined. The effect size was categorized as trivial (ηp2 ≤ 0.01), small (0.01 ≤ ηp2 < 0.06), moderate (0.06 ≤ ηp2 < 0.14) or large (ηp2 ≥ 0.14) [26].
- Relationship analysis with final uphill time: Multiple regression and correlation models were calculated using an “intro” method. Mechanical vertical COM power was considered the dependent variable, and net metabolic power and vertical net metabolic cost of transport were the independent variables in the three VK sections. The entry and exit criteria were set at F probabilities greater than 0.05 and 0.10, respectively. The residual linearity and independence assumptions were checked with the Durbin–Watson test. The homoscedasticity was studied in a partial standardized residual-standardized prediction plot. The method of Bland and Altman was used to determine systematic bias and random error in the prediction model, as well as the lower and upper limits of agreement (1.96 × SD). The multicollinearity was estimated using a variance inflation factor (VIF), with values greater than 10 considered excessive. Influential cases (Cook’s distance > 1) and atypical cases (residual > 3 standard deviations) were removed from the analysis.
- A significance level of p < 0.05 was established. All statistical tests were conducted using the statistical package SPSS version 25.0 (SPSS, Chicago, IL, USA).
3. Results
4. Discussion
4.1. Vertical Kilometer Performance Analysis
4.2. The Impact of Fatigue on the Vertical Kilometer
4.3. Examining Fatigue Effects Based on Runners’ Performance Levels
4.4. Metabolic Power Calculation
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bunn, J.A.; Navalta, J.W.; Fountaine, C.J.; Reece, J.D. Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015–2017. Int. J. Exerc. Sci. 2018, 11, 503–515. [Google Scholar] [PubMed]
- Helwig, J.; Diels, J.; Röll, M.; Mahler, H.; Gollhofer, A.; Roecker, K.; Willwacher, S. Relationships between External, Wearable Sensor-Based, and Internal Parameters: A Systematic Review. Sensors 2023, 23, 827. [Google Scholar] [CrossRef] [PubMed]
- Passos, J.; Lopes, S.I.; Clemente, F.M.; Moreira, P.M.; Rico-González, M.; Bezerra, P.; Rodrigues, L.P. Wearables and Internet of Things (IoT) Technologies for Fitness Assessment: A Systematic Review. Sensors 2021, 21, 5418. [Google Scholar] [CrossRef] [PubMed]
- Home—The International Skyrunning Federation. Available online: https://www.skyrunning.com/ (accessed on 20 August 2023).
- Conley, D.L.; Krahenbuhl, G.S. Running Economy and Distance Running Performance of Highly Trained Athletes. Med. Sci. Sports Exerc. 1980, 12, 357–360. [Google Scholar] [CrossRef]
- Kipp, S.; Byrnes, W.C.; Kram, R. Calculating Metabolic Energy Expenditure across a Wide Range of Exercise Intensities: The Equation Matters. Appl. Physiol. Nutr. Metab. 2018, 43, 639–642. [Google Scholar] [CrossRef]
- Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors Affecting Running Economy in Trained Distance Runners. Sports Med. 2004, 34, 465–485. [Google Scholar] [CrossRef]
- Barnes, K.R.; Kilding, A.E. Running Economy: Measurement, Norms, and Determining Factors. Sport. Med. Open 2015, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.; Esau, S.; Macintosh, B. Economy of Running: Beyond the Measurement of Oxygen Uptake. J. Appl. Physiol. 2009, 107, 1918–1922. [Google Scholar] [CrossRef]
- Cerezuela-Espejo, V.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Mora-Rodríguez, R.; Pallarés, J.G. Are We Ready to Measure Running Power? Repeatability and Concurrent Validity of Five Commercial Technologies. Eur. J. Sport Sci. 2021, 21, 341–350. [Google Scholar] [CrossRef]
- Imbach, F.; Candau, R.; Chailan, R.; Perrey, S. Validity of the Stryd Power Meter in Measuring Running Parameters at Submaximal Speeds. Sports 2020, 8, 103. [Google Scholar] [CrossRef]
- Giovanelli, N.; Taboga, P.; Rejc, E.; Lazzer, S. Effects of Strength, Explosive and Plyometric Training on Energy Cost of Running in Ultra-Endurance Athletes. Eur. J. Sport Sci. 2017, 17, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Lazzer, S.; Salvadego, D.; Taboga, P.; Rejc, E.; Giovanelli, N.; di Prampero, P.E. Effects of the Etna Uphill Ultramarathon on Energy Cost and Mechanics of Running. Int. J. Sports Physiol. Perform. 2015, 10, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.J.; Belliveau, R.A. Sources of Mechanical Power for Uphill Running in Humans. J. Exp. Biol. 2005, 208, 1963–1970. [Google Scholar] [CrossRef]
- Margaria, R.; Cerretelli, P.; Aghemo, P.; Sassi, G. Energy Cost of Running. J. Appl. Physiol. 1963, 18, 367–370. [Google Scholar] [CrossRef]
- Minetti, A.E.; Moia, C.; Roi, G.S.; Susta, D.; Ferretti, G. Energy Cost of Walking and Running at Extreme Uphill and Downhill Slopes. J. Appl. Physiol. 2002, 93, 1039–1046. [Google Scholar] [CrossRef]
- Balducci, P.; Clémençon, M.; Morel, B.; Quiniou, G.; Saboul, D.; Hautier, C.A. Comparison of Level and Graded Treadmill Tests to Evaluate Endurance Mountain Runners. J. Sports Sci. Med. 2016, 15, 239–246. [Google Scholar] [PubMed]
- Balducci, P.; Clémençon, M.; Trama, R.; Blache, Y.; Hautier, C. Performance Factors in a Mountain Ultramarathon. Int. J. Sports Med. 2017, 38, 819–826. [Google Scholar] [CrossRef]
- Vernillo, G.; Savoldelli, A.; Zignoli, A.; Skafidas, S.; Fornasiero, A.; La Torre, A.; Bortolan, L.; Pellegrini, B.; Schena, F. Energy Cost and Kinematics of Level, Uphill and Downhill Running: Fatigue-Induced Changes after a Mountain Ultramarathon. J. Sports Sci. 2015, 33, 1998–2005. [Google Scholar] [CrossRef]
- Saibene, F.; Minetti, A.E. Biomechanical and Physiological Aspects of Legged Locomotion in Humans. Eur. J. Appl. Physiol. 2003, 88, 297–316. [Google Scholar] [CrossRef]
- Snyder, K.L.; Kram, R.; Gottschall, J.S. The Role of Elastic Energy Storage and Recovery in Downhill and Uphill Running. J. Exp. Biol. 2012, 215, 2283–2287. [Google Scholar] [CrossRef]
- Dewolf, A.H.; Peñailillo, L.E.; Willems, P.A. The Rebound of the Body during Uphill and Downhill Running at Different Speeds. J. Exp. Biol. 2016, 219, 2276–2288. [Google Scholar] [CrossRef] [PubMed]
- Lemire, M.; Falbriard, M.; Aminian, K.; Millet, G.P.; Meyer, F. Level, Uphill, and Downhill Running Economy Values Are Correlated Except on Steep Slopes. Front. Physiol. 2021, 12, 697315. [Google Scholar] [CrossRef] [PubMed]
- Peyré-Tartaruga, L.A.; Coertjens, M. Locomotion as a Powerful Model to Study Integrative Physiology: Efficiency, Economy, and Power Relationship. Front. Physiol. 2018, 9, 1789. [Google Scholar] [CrossRef] [PubMed]
- Gaesser, G.A.; Brooks, G.A. Muscular Efficiency during Steady-Rate Exercise: Effects of Speed and Work Rate. J. Appl. Physiol. 1975, 38, 1132–1139. [Google Scholar] [CrossRef]
- Field, A.P. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; SAGE Publications: Thousand Oaks, CA, USA, 2013; ISBN 9781446249178. [Google Scholar]
- De Lucas, R.D.; Karam De Mattos, B.; Tremel, A.D.C.; Pianezzer, L.; De Souza, K.M.; Guglielmo, L.G.A.; Denadai, B.S. A Novel Treadmill Protocol for Uphill Running Assessment: The Incline Incremental Running Test (IIRT). Res. Sports Med. 2022, 30, 554–565. [Google Scholar] [CrossRef]
- Doucende, G.; Chamoux, M.; Defer, T.; Rissetto, C.; Mourot, L.; Cassirame, J. Specific Incremental Test for Aerobic Fitness in Trail Running: IncremenTrail. Sports 2022, 10, 174. [Google Scholar] [CrossRef]
- Cassirame, J.; Godin, A.; Chamoux, M.; Doucende, G.; Mourot, L. Physiological Implication of Slope Gradient during Incremental Running Test. Int. J. Environ. Res. Public Health 2022, 19, 12210. [Google Scholar] [CrossRef]
- Schöffl, I.; Jasinski, D.; Ehrlich, B.; Dittrich, S.; Schöffl, V. Outdoor Uphill Exercise Testing for Trail Runners, a More Suitable Method? J. Hum. Kinet. 2021, 79, 123–133. [Google Scholar] [CrossRef]
- Gottschall, J.S.; Kram, R. Ground Reaction Forces during Downhill and Uphill Running. J. Biomech. 2005, 38, 445–452. [Google Scholar] [CrossRef]
- Khassetarash, A.; Vernillo, G.; Martinez, A.; Baggaley, M.; Giandolini, M.; Horvais, N.; Millet, G.Y.; Edwards, W.B. Biomechanics of Graded Running: Part II-Joint Kinematics and Kinetics. Scand. J. Med. Sci. Sports 2020, 30, 1642–1654. [Google Scholar] [CrossRef]
- Ehrström, S.; Tartaruga, M.P.; Easthope, C.S.; Brisswalter, J.; Morin, J.-B.; Vercruyssen, F. Short Trail Running Race: Beyond the Classic Model for Endurance Running Performance. Med. Sci. Sports Exerc. 2018, 50, 580–588. [Google Scholar] [CrossRef]
- Ortiz, A.L.R.; Giovanelli, N.; Kram, R. The Metabolic Costs of Walking and Running up a 30-Degree Incline: Implications for Vertical Kilometer Foot Races. Eur. J. Appl. Physiol. 2017, 117, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Müller, N.; Schöffl, V.; Ehrlich, B.; Moser, O.; Schöffl, I. The Energetic Costs of Uphill Locomotion in Trail Running: Physiological Consequences Due to Uphill Locomotion Pattern—A Feasibility Study. Life 2022, 12, 2070. [Google Scholar] [CrossRef] [PubMed]
- Drobnič, M.; Verdel, N.; Holmberg, H.-C.; Supej, M. The Validity of a Three-Dimensional Motion Capture System and the Garmin Running Dynamics Pod in Connection with an Assessment of Ground Contact Time While Running in Place. Sensors 2023, 23, 7155. [Google Scholar] [CrossRef] [PubMed]
- Lichtwark, G.A.; Wilson, A.M. Interactions between the Human Gastrocnemius Muscle and the Achilles Tendon during Incline, Level and Decline Locomotion. J. Exp. Biol. 2006, 209, 4379–4388. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, N.; Ortiz, A.L.R.; Henninger, K.; Kram, R. Energetics of Vertical Kilometer Foot Races; Is Steeper Cheaper? J. Appl. Physiol. 2016, 120, 370–375. [Google Scholar] [CrossRef]
- Giandolini, M.; Vernillo, G.; Samozino, P.; Horvais, N.; Edwards, W.B.; Morin, J.-B.; Millet, G.Y. Fatigue Associated with Prolonged Graded Running. Eur. J. Appl. Physiol. 2016, 116, 1859–1873. [Google Scholar] [CrossRef]
- Fourchet, F.; Millet, G.P.; Tomazin, K.; Guex, K.; Nosaka, K.; Edouard, P.; Degache, F.; Millet, G.Y. Effects of a 5-h Hilly Running on Ankle Plantar and Dorsal Flexor Force and Fatigability. Eur. J. Appl. Physiol. 2012, 112, 2645–2652. [Google Scholar] [CrossRef]
- Millet, G.Y.; Tomazin, K.; Verges, S.; Vincent, C.; Bonnefoy, R.; Boisson, R.-C.; Gergelé, L.; Féasson, L.; Martin, V. Neuromuscular Consequences of an Extreme Mountain Ultra-Marathon. PLoS ONE 2011, 6, e17059. [Google Scholar] [CrossRef]
- Temesi, J.; Arnal, P.J.; Rupp, T.; Féasson, L.; Cartier, R.; Gergelé, L.; Verges, S.; Martin, V.; Millet, G.Y. Are Females More Resistant to Extreme Neuromuscular Fatigue? Med. Sci. Sports Exerc. 2015, 47, 1372–1382. [Google Scholar] [CrossRef]
- Muñoz-Pérez, I.; Varela-Sanz, A.; Lago-Fuentes, C.; Navarro-Patón, R.; Mecías-Calvo, M. Central and Peripheral Fatigue in Recreational Trail Runners: A Pilot Study. Int. J. Environ. Res. Public Health 2022, 20, 402. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.Y.; Martin, V.; Lattier, G.; Ballay, Y. Mechanisms Contributing to Knee Extensor Strength Loss after Prolonged Running Exercise. J. Appl. Physiol. 2003, 94, 193–198. [Google Scholar] [CrossRef]
- Noakes, T.D. Fatigue Is a Brain-Derived Emotion That Regulates the Exercise Behavior to Ensure the Protection of Whole Body Homeostasis. Front. Physiol. 2012, 3, 82. [Google Scholar] [CrossRef]
- Pokora, I.; Kempa, K.; Chrapusta, S.J.; Langfort, J. Effects of Downhill and Uphill Exercises of Equivalent Submaximal Intensities on Selected Blood Cytokine Levels and Blood Creatine Kinase Activity. Biol. Sport 2014, 31, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Mercier, J.; Le Gallais, D.; Durand, M.; Goudal, C.; Micallef, J.P.; Préfaut, C. Energy Expenditure and Cardiorespiratory Responses at the Transition between Walking and Running. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Vercruyssen, F.; Tartaruga, M.; Horvais, N.; Brisswalter, J. Effects of Footwear and Fatigue on Running Economy and Biomechanics in Trail Runners. Med. Sci. Sports Exerc. 2016, 48, 1976–1984. [Google Scholar] [CrossRef]
- Sabater Pastor, F.; Varesco, G.; Besson, T.; Koral, J.; Feasson, L.; Millet, G.Y. Degradation of Energy Cost with Fatigue Induced by Trail Running: Effect of Distance. Eur. J. Appl. Physiol. 2021, 121, 1665–1675. [Google Scholar] [CrossRef]
- Hunter, I.; Smith, G.A. Preferred and Optimal Stride Frequency, Stiffness and Economy: Changes with Fatigue during a 1-h High-Intensity Run. Eur. J. Appl. Physiol. 2007, 100, 653–661. [Google Scholar] [CrossRef]
- Vernillo, G.; Giandolini, M.; Edwards, W.B.; Morin, J.-B.; Samozino, P.; Horvais, N.; Millet, G.Y. Biomechanics and Physiology of Uphill and Downhill Running. Sports Med. 2017, 47, 615–629. [Google Scholar] [CrossRef]
- Degache, F.; Guex, K.; Fourchet, F.; Morin, J.B.; Millet, G.P.; Tomazin, K.; Millet, G.Y. Changes in Running Mechanics and Spring-Mass Behaviour Induced by a 5-Hour Hilly Running Bout. J. Sports Sci. 2013, 31, 299–304. [Google Scholar] [CrossRef]
- Morin, J.-B.; Samozino, P.; Millet, G.Y. Changes in Running Kinematics, Kinetics, and Spring-Mass Behavior over a 24-h Run. Med. Sci. Sports Exerc. 2011, 43, 829–836. [Google Scholar] [CrossRef]
- McMahon, T.A.; Valiant, G.; Frederick, E.C. Groucho Running. J. Appl. Physiol. 1987, 62, 2326–2337. [Google Scholar] [CrossRef] [PubMed]
- Shorten, M.R. Mechanical Energy Transformations and Energy Expenditure in Running Man. Ph.D. Thesis, Loughborough University, Loughborough, UK, 1984. [Google Scholar]
- Vernillo, G.; Millet, G.P.; Millet, G.Y. Does the Running Economy Really Increase after Ultra-Marathons? Front. Physiol. 2017, 8, 783. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.Y.; Hoffman, M.D.; Morin, J.B. Sacrificing Economy to Improve Running Performance—A Reality in the Ultramarathon? J. Appl. Physiol. 2012, 113, 507–509. [Google Scholar] [CrossRef] [PubMed]
- Ettema, G.; Lorås, H.W. Efficiency in Cycling: A Review. Eur. J. Appl. Physiol. 2009, 106, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pastor, F.S.; Besson, T.; Varesco, G.; Parent, A.; Fanget, M.; Koral, J.; Foschia, C.; Rupp, T.; Rimaud, D.; Féasson, L.; et al. Performance Determinants in Trail-Running Races of Different Distances. Int. J. Sports Physiol. Perform. 2022, 17, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Blagrove, R.C.; Howatson, G.; Hayes, P.R. Effects of Strength Training on the Physiological Determinants of Middle- and Long-Distance Running Performance: A Systematic Review. Sports Med. 2018, 48, 1117–1149. [Google Scholar] [CrossRef] [PubMed]
- Ferley, D.D.; Osborn, R.W.; Vukovich, M.D. The Effects of Incline and Level-Grade High-Intensity Interval Treadmill Training on Running Economy and Muscle Power in Well-Trained Distance Runners. J. Strength Cond. Res. 2014, 28, 1298–1309. [Google Scholar] [CrossRef]
- Gimenez, P.; Arnal, P.J.; Samozino, P.; Millet, G.Y.; Morin, J.-B. Simulation of Uphill/Downhill Running on a Level Treadmill Using Additional Horizontal Force. J. Biomech. 2014, 47, 2517–2521. [Google Scholar] [CrossRef]
- Davidson, P.; Virekunnas, H.; Sharma, D.; Piché, R.; Cronin, N. Continuous Analysis of Running Mechanics by Means of an Integrated INS/GPS Device. Sensors 2019, 19, 1480. [Google Scholar] [CrossRef]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; di Prampero, P.E. Energy Cost and Metabolic Power in Elite Soccer: A New Match Analysis Approach. Med. Sci. Sports Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Manouvrier, C.; Cassirame, J.; Morin, J.-B. Monitoring Locomotor Load in Soccer: Is Metabolic Power, Powerful? Int. J. Sports Med. 2015, 36, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Di Prampero, P.E.; Botter, A.; Osgnach, C. The Energy Cost of Sprint Running and the Role of Metabolic Power in Setting Top Performances. Eur. J. Appl. Physiol. 2015, 115, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Coutts, A.J.; Kempton, T.; Sullivan, C.; Bilsborough, J.; Cordy, J.; Rampinini, E. Metabolic Power and Energetic Costs of Professional Australian Football Match-Play. J. Sci. Med. Sport 2015, 18, 219–224. [Google Scholar] [CrossRef] [PubMed]
Men | Women | |
---|---|---|
Age (years) | 22–38 * | 19–35 * |
28.4 ± 5.11 | 27.7 ± 6.70 | |
Height (cm) | 174 ± 4.54 | 163 ± 2.36 |
Body mass (kg) | 69.8 ± 5.56 | 54 ± 4.08 |
BMI (kg/m2) | 22.8 ± 1.63 | 20.2 ± 1.01 |
Running training duration per session (min) | 52 ± 7.58 | 60 ± 21.6 |
Running training frequency per week (days/week) | 4.40 ± 1.14 | 4.75 ± 1.26 |
Pre-test heart rate (bpm) | 73.8 ± 10.7 | 79.5 ± 3.31 |
HR change (%) | 16.1 ± 4.99 | 61.2 ± 56.6 |
VO2 peak (mL/kg/min) | 65.8 ± 7.00 | 57.9 ± 6.61 |
Section 1 | Section 2 | Section 3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0° | 5° | 10° | 15° | 20° | 0° | 5° | 10° | 15° | 20° | 0° | 5° | 10° | 15° | 20° | |
Velocity (m/s) | 3.42 ± 0.39 | 1.98 ± 0.34 | 1.52 ± 0.19 | 1.35 ± 0.21 | 1.00 ± 0.13 | 2.26 ± 0.38 | 1.95 ± 0.30 | 1.40 ± 0.24 | 1.03 ± 0.14 | 0.88 ± 0.14 | 2.39 ± 0.60 | 1.67 ± 0.27 | 1.33 ± 0.19 | 1.00 ± 0.22 | 0.73 ± 0.16 |
Vertical velocity (m/s) | 0 ± 0 | 0.17 ± 0.03 | 0.26 ± 0.03 | 0.35 ± 0.05 | 0.34 ± 0.05 | 0 ± 0 | 0.17 ± 0.03 | 0.24 ± 0.04 | 0.27 ± 0.04 | 0.30 ± 0.05 | 0 ± 0 | 0.14 ± 0.02 | 0.23 ± 0.03 | 0.26 ± 0.06 | 0.25 ± 0.06 |
RER | 0.94 ± 0.08 | 0.82 ± 0.08 | 0.88 ± 0.10 | 0.90 ± 0.10 | 0.81 ± 0.08 | 0.82 ± 0.08 | 0.81 ± 0.09 | 0.81 ± 0.08 | 0.80 ± 0.08 | 0.80 ± 0.08 | 0.79 ± 0.08 | 0.80 ± 0.08 | 0.78 ± 0.08 | 0.79 ± 0.07 | 0.80 ± 0.08 |
Mechanical vertical COM power (W/kg) | 0 ± 0 | 1.69 ± 0.29 | 2.58 ± 0.32 | 3.42 ± 0.54 | 3.38 ± 0.47 | 0 ± 0 | 1.67 ± 0.26 | 2.37 ± 0.40 | 2.62 ± 0.36 | 2.94 ± 0.48 | 0 ± 0 | 1.42 ± 0.23 | 2.25 ± 0.33 | 2.54 ± 0.55 | 2.46 ± 0.55 |
Net metabolic power (W/kg) | 17 ± 2.41 | 17.4 ± 3.10 | 18.8 ± 2.97 | 18.7 ± 2.80 | 17.5 ± 2.69 | 16.3 ± 2.89 | 16.4 ± 2.84 | 16.3 ± 2.93 | 16.5 ± 2.82 | 16.3 ± 2.97 | 15.1 ± 3.33 | 16 ± 2.92 | 16.3 ± 2.65 | 16.7 ± 2.77 | 16.8 ± 2.91 |
Net mechanical efficiency | 0 ± 0 | 9.88 ± 1.54 | 13.9 ± 2.15 | 18.6 ± 3.10 | 19.5 ± 2.83 | 0 ± 0 | 10.3 ± 1.66 | 14.8 ± 2.91 | 16 ± 1.92 | 18.1 ± 2.05 | 0 ± 0 | 9.03 ± 1.37 | 14.0 ± 1.75 | 15.6 ± 4.48 | 14.7 ± 2.23 |
Net metabolic cost of transport (J/kg/m) | 5.01 ± 0.72 | 8.84 ± 1.37 | 12.4 ± 1.81 | 14.0 ± 2.36 | 17.4 ± 2.16 | 7.26 ± 0.97 | 8.47 ± 1.19 | 11.8 ± 2.15 | 16.0 ± 1.96 | 18.7 ± 2.03 | 6.77 ± 2.47 | 9.66 ± 1.39 | 12.3 ± 1.54 | 17.2 ± 4.19 | 23.4 ± 3.72 |
Vertical net metabolic cost of transport (J/kg/m) | 0 ± 0 | 101.6 ± 15.7 | 71.9 ± 10.5 | 54.2 ± 9.15 | 51.0 ± 6.32 | 0 ± 0 | 97.3 ± 13.6 | 68.5 ± 12.4 | 62.1 ± 7.59 | 54.8 ± 5.93 | 0 ± 0 | 111.1 ± 15.9 | 71.3 ± 8.92 | 66.8 ± 16.2 | 68.5 ± 10.9 |
Section 1 | Section 2 | Section 3 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0° | 5° | 10° | 15° | 20° | 0° | 5° | 10° | 15° | 20° | 0° | 5° | 10° | 15° | 20° | ||
Vertical velocity (m/s) | 1st quartile (n = 5) | 0 ± 0 | 0.20 ± 0.02 * | 0.29 ± 0.02 * | 0.39 ± 0.06 * | 0.37 ± 0.02 * | 0 ± 0 | 0.19 ± 0.01 * | 0.26 ± 0.04 | 0.30 ± 0.02 * | 0.35 ± 0.03 ** | 0 ± 0 | 0.16 ± 0.02 * | 0.26 ± 0.03 * | 0.28 ± 0.02 * | 0.30 ± 0.01 ** |
Remaining quartiles (n = 9) | 0 ± 0 | 0.16 ± 0.02 | 0.26 ± 0.03 | 0.33 ± 0.04 | 3.33 ± 0.05 | 0 ± 0 | 0.16 ± 0.02 | 0.23 ± 0.04 | 0.25 ± 0.03 | 0.28 ± 0.03 | 0 ± 0 | 0.14 ± 0.02 | 0.21 ± 0.02 | 0.24 ± 0.06 | 0.22 ± 0.04 | |
Velocity (m/s) | 1st quartile | 3.74 ± 0.23 * | 2.26 ± 0.27 * | 1.67 ± 0.15 * | 1.53 ± 0.22 * | 1.10 ± 0.07 * | 2.64 ± 0.14 * | 2.25 ± 0.15 * | 1.52 ± 0.24 | 1.17 ± 0.09 ** | 1.02 ± 0.09 * | 2.79 ± 0.24 * | 1.90 ± 0.24 * | 1.50 ± 0.20 * | 1.10 ± 0.68 * | 0.89 ± 0.03 ** |
Remaining quartiles | 3.33 ± 0.41 | 1.86 ± 0.28 | 1.49 ± 0.22 | 1.27 ± 0.15 | 0.96 ± 0.14 | 2.10 ± 0.32 | 1.83 ± 0.27 | 1.35 ± 0.22 | 0.98 ± 0.12 | 0.81 ± 0.09 | 2.22 ± 0.61 | 1.58 ± 0.23 | 1.23 ± 1.10 | 0.94 ± 0.25 | 0.65 ± 0.13 | |
Mechanical vertical COM power (W/kg) | 1st quartile | 0 ± 0 | 1.92 ± 0.23 * | 2.82 ± 0.25 * | 3.87 ± 0.56 * | 3.62 ± 0.23 * | 0 ± 0 | 1.92 ± 0.13 * | 2.58 ± 0.41 * | 2.97 ± 0.24 * | 3.43 ± 0.32 ** | 0 ± 0 | 1.62 ± 0.20 * | 2.54 ± 0.35 * | 2.77 ± 0.17 | 2.98 ± 0.12 ** |
Remaining quartiles | 0 ± 0 | 1.56 ± 0.24 | 2.44 ± 0.28 | 3.19 ± 0.37 | 3.25 ± 0.53 | 0 ± 0 | 1.53 ± 0.21 | 2.25 ± 0.37 | 2.43 ± 0.26 | 2.66 ± 0.30 | 0 ± 0 | 1.32 ± 0.18 | 2.09 ± 0.19 | 2.42 ± 0.65 | 2.17 ± 0.48 | |
Net metabolic power (W/kg) | 1st quartile | 19 ± 0.64 *# | 20.1 ± 2.62 *# | 22 ± 1.10 **# | 21.6 ± 1.66 **# | 20.1 ± 1.32 *# | 19.5 ± 0.93 **# | 19.6 ± 1.61 **# | 19.7 ± 1.35 **# | 19.7 ± 1.24 **# | 19.8 ± 1.46 **# | 18.6 ± 2.16 **# | 19.4 ± 1.42 **# | 19.3 ± 1.24 **# | 19.9 ± 1.11 **# | 20.2 ± 1.46 **# |
Remaining quartiles | 15.9 ± 2.31 | 15.8 ± 2.21 | 17.1 ± 2.06 | 17.1 ± 1.81 | 16 ± 2.08 | 14.5 ± 1.75 | 14.6 ± 1.31 | 14.4 ± 1.28 | 14.8 ± 1.52 | 14.4 ± 1.19 | 13.1 ± 1.88 | 14.1 ± 1.13 | 14.6 ± 1.25 | 14.9 ± 1.42 | 14.9 ± 1.25 |
p-Value | Power (SP) | Effect Size (ηp2) | |||
---|---|---|---|---|---|
Vertical velocity (m/s) | Section | <0.001 | 1 | 0.779 | Large |
Slope | <0.001 | 1 | 0.973 | Large | |
Interaction | <0.001 | 1 | 0.463 | Large | |
Velocity (m/s) | Section | <0.001 | 1 | 0.872 | Large |
Slope | <0.001 | 1 | 0.949 | Large | |
Interaction | <0.001 | 1 | 0.654 | Large | |
Mechanical vertical COM power (W/kg) | Section | <0.001 | 1 | 0.776 | Large |
Slope | <0.001 | 1 | 0.972 | Large | |
Interaction | <0.001 | 1 | 0.452 | Large | |
Net metabolic power (W/kg) | Section | <0.001 | 0.993 | 0.600 | Large |
Slope | <0.001 | 1 | 0.489 | Large | |
Interaction | <0.001 | 0.991 | 0.243 | Large | |
Net mechanical efficiency | Section | <0.001 | 1 | 0.626 | Large |
Slope | <0.001 | 1 | 0.969 | Large | |
Interaction | <0.001 | 0.994 | 0.379 | Large | |
Net metabolic cost of transport (J/kg/m) | Section | <0.001 | 1 | 0.706 | Large |
Slope | <0.001 | 1 | 0.952 | Large | |
Interaction | <0.001 | 0.997 | 0.406 | Large | |
Vertical net metabolic cost of transport (J/kg/m) | Section | <0.001 | 1 | 0.648 | Large |
Slope | <0.001 | 1 | 0.972 | Large | |
Interaction | <0.001 | 0.964 | 0.304 | Large |
Sections 1 vs. 2 | Sections 1 vs. 3 | Sections 2 vs. 3 | ||
---|---|---|---|---|
Vertical velocity (m/s) | 5° | =0% | ↓21.4% * | ↓21.4% * |
10° | ↓8.33% | ↓13% * | ↓4.35% | |
15° | ↓29.6% ** | ↓35.6% ** | ↓3.85% | |
20° | ↓13.3% * | ↓36% ** | ↓20% * | |
Velocity (m/s) | 0° | ↓51.3% ** | ↓43.1% ** | ↑5.75% |
5° | ↓1.53% | ↓18.6% * | ↓16.8% * | |
10° | ↓8.6% | ↓14.3% * | ↓5.3% | |
15° | ↓31% ** | ↓35% ** | ↓3% | |
20° | ↓13.6% * | ↓37% ** | ↓20.5% * | |
Mechanical vertical COM power (W/kg) | 5° | ↓1.19% | ↓19% * | ↓17% * |
10° | ↓8.86% | ↓14.7% * | ↓5.33% | |
15° | ↓30.5% ** | ↓34.6% ** | ↓3.15% | |
20° | ↓15% * | ↓37.4% ** | ↓19.5% * | |
Net metabolic power (W/kg) | 0° | ↓4.3% | ↓12.6% | ↓7.95% |
5° | ↓6.10% | ↓8.75% | ↓2.50% | |
10° | ↓15.3% ** | ↓15.3% ** | =0% | |
15° | ↓13.3% ** | ↓12% ** | ↑1.21% | |
20° | ↓7.36% | ↓4.17% | ↑3.07% | |
Net mechanical efficiency | 5° | ↑4.25% | ↓9.41% * | ↓14.1% * |
10° | ↑6.47% | ↓0.72% | ↓5.71% | |
15° | ↓16.2% * | ↓19.2% * | ↓2.56% | |
20° | ↓7.73% | ↓32.6% ** | ↓23.1% * | |
Net metabolic cost of transport (J/kg/m) | 0° | ↑44.9% ** | ↑35.1% * | ↓7.24% |
5° | ↓4.37% | ↑9.28% * | ↑14% * | |
10° | ↓5.08% | ↓0.81% | ↑4.24% | |
15° | ↑14.3% * | ↑22.8% * | ↑7.5% | |
20° | ↑7.47% | ↑34.5% ** | ↑25.1% * | |
Vertical net metabolic cost of transport (J/kg/m) | 5° | ↓4.42% | ↑9.35% * | ↑14.2% * |
10° | ↓4.96% | ↓0.84% | ↑4.10% | |
15° | ↑14.6% * | ↑23.2% * | ↑7.57% | |
20° | ↑7.45% | ↑34.3% ** | ↑25% * |
R | R2 | adR2 | SEE | p | Durbin–Watson | B | SE | Beta | p | B | VIF | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LL95% | UL95% | ||||||||||||
0.975 | 0.951 | 0.942 | 0.07 | <0.001 | 1.911 | 0.133 | 0.009 | 1.243 | <0.001 | 0.113 | 0.152 | 1.626 | |
−0.030 | 0.003 | −0.797 | <0.001 | −0.037 | −0.023 | 1.626 | |||||||
2.376 | 0.183 | <0.001 | 1.973 | 2.779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bascuas, P.J.; Gutiérrez, H.; Piedrafita, E.; Rabal-Pelay, J.; Berzosa, C.; Bataller-Cervero, A.V. Running Economy in the Vertical Kilometer. Sensors 2023, 23, 9349. https://doi.org/10.3390/s23239349
Bascuas PJ, Gutiérrez H, Piedrafita E, Rabal-Pelay J, Berzosa C, Bataller-Cervero AV. Running Economy in the Vertical Kilometer. Sensors. 2023; 23(23):9349. https://doi.org/10.3390/s23239349
Chicago/Turabian StyleBascuas, Pablo Jesus, Héctor Gutiérrez, Eduardo Piedrafita, Juan Rabal-Pelay, César Berzosa, and Ana Vanessa Bataller-Cervero. 2023. "Running Economy in the Vertical Kilometer" Sensors 23, no. 23: 9349. https://doi.org/10.3390/s23239349
APA StyleBascuas, P. J., Gutiérrez, H., Piedrafita, E., Rabal-Pelay, J., Berzosa, C., & Bataller-Cervero, A. V. (2023). Running Economy in the Vertical Kilometer. Sensors, 23(23), 9349. https://doi.org/10.3390/s23239349