Myotendinous Thermoregulation in National Level Sprinters after a Unilateral Fatigue Acute Bout—A Descriptive Study
Abstract
:1. Introduction
2. Material and Method
2.1. Study Design
2.2. Participants
2.3. Assessments
2.3.1. Medical Exam and Familiarization Session
2.3.2. Thermography Protocol and Muscular Stress Test
2.3.3. Anthropometry
2.3.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menezes, P.; Rhea, M.R.; Herdy, C.; Simão, R. Effects of Strength Training Program and Infrared Thermography in Soccer Athletes Injuries. Sports 2018, 6, 148. [Google Scholar] [CrossRef]
- Sánchez-Jiménez, J.L.; Tejero-Pastor, R.; Calzadillas-Valles, M.D.C.; Jimenez-Perez, I.; Cibrián Ortiz de Anda, R.M.; Salvador-Palmer, R.; Priego-Quesada, J.I. Chronic and Acute Effects on Skin Temperature from a Sport Consisting of Repetitive Impacts from Hitting a Ball with the Hands. Sensors 2022, 22, 8572. [Google Scholar] [CrossRef]
- Cabizosu, A.; Carboni, N.; Figus, A.; Vegara-Meseguer, J.M.; Casu, G.; Hernández Jiménez, P.; Martinez-Almagro Andreo, A. Is Infrared Thermography (IRT) a Possible Tool for the Evaluation and Follow up of Emery-Dreifuss Muscular Dystrophy? A Preliminary Study. Med. Hypotheses 2019, 127, 91–96. [Google Scholar] [CrossRef]
- Ring, E.F.J.; Ammer, K. Infrared Thermal Imaging in Medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef]
- Amaro, A.M.; Paulino, M.F.; Neto, M.A.; Roseiro, L. Hand-Arm Vibration Assessment and Changes in the Thermal Map of the Skin in Tennis Athletes during the Service. Int. J. Environ. Res. Public Health 2019, 16, 5117. [Google Scholar] [CrossRef]
- Lino-Samaniego, Á.; de la Rubia, A.; Sillero-Quintana, M. Acute Effect of Auxotonic and Isometric Contraction Evaluated by Infrared Thermography in Handball Players. J. Therm. Biol. 2022, 109, 103318. [Google Scholar] [CrossRef]
- Pérez-Guarner, A.; Priego-Quesada, J.I.; Oficial-Casado, F.; Cibrián Ortiz de Anda, R.M.; Carpes, F.P.; Palmer, R.S. Association between Physiological Stress and Skin Temperature Response after a Half Marathon. Physiol. Meas. 2019, 40, 034009. [Google Scholar] [CrossRef]
- Hu, H.; Yang, X.; Zhai, F.; Hu, D.; Liu, R.; Liu, K.; Sun, Z.; Dai, Q. Far-Field Nanoscale Infrared Spectroscopy of Vibrational Fingerprints of Molecules with Graphene Plasmons. Nat. Commun. 2016, 7, 12334. [Google Scholar] [CrossRef]
- Wu, T.; Luo, Y.; Wei, L. Mid-Infrared Sensing of Molecular Vibrational Modes with Tunable Graphene Plasmons. Opt. Lett. 2017, 42, 2066–2069. [Google Scholar] [CrossRef]
- Naviaux, R.K. Metabolic Features of the Cell Danger Response. Mitochondrion 2014, 16, 7–17. [Google Scholar] [CrossRef]
- Pérez-Buitrago, S.; Tobón-Pareja, S.; Gómez-Gaviria, Y.; Guerrero-Peña, A.; Díaz-Londoño, G. Methodology to Evaluate Temperature Changes in Multiple Sclerosis Patients by Calculating Texture Features from Infrared Thermography Images. Quant. InfraRed Thermogr. J. 2022, 19, 1–11. [Google Scholar] [CrossRef]
- Maki, K.A.; Griza, D.S.; Phillips, S.A.; Wolska, B.M.; Vidovich, M.I. Altered Hand Temperatures Following Transradial Cardiac Catheterization: A Thermography Study. Cardiovasc. Revascularization Med. Mol. Interv. 2019, 20, 496–502. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, S.E.; Neves, E.B.; Martinez, E.C.; Marson, R.A.; Machado de Ribeiro dos Reis, V.M. Association of Metabolic Syndrome Risk Factors with Activation of Brown Adipose Tissue Evaluated by Infrared Thermography. Quant. InfraRed Thermogr. J. 2023, 20, 1–17. [Google Scholar] [CrossRef]
- Verstockt, J.; Verspeek, S.; Thiessen, F.; Tjalma, W.A.; Brochez, L.; Steenackers, G. Skin Cancer Detection Using Infrared Thermography: Measurement Setup, Procedure and Equipment. Sensors 2022, 22, 3327. [Google Scholar] [CrossRef]
- Bardhan, S.; Nath, S.; Debnath, T.; Bhattacharjee, D.; Bhowmik, M.K. Designing of an Inflammatory Knee Joint Thermogram Dataset for Arthritis Classification Using Deep Convolution Neural Network. Quant. InfraRed Thermogr. J. 2022, 19, 145–171. [Google Scholar] [CrossRef]
- Özdil, A.; Yilmaz, B. Medical Infrared Thermal Image Based Fatty Liver Classification Using Machine and Deep Learning. Quant. InfraRed Thermogr. J. 2023, 20, 1–18. [Google Scholar] [CrossRef]
- Molina-Payá, F.J.; Ríos-Díaz, J.; Carrasco-Martínez, F.; Martínez-Payá, J.J. Infrared Thermography, Intratendon Vascular Resistance, and Echotexture in Athletes with Patellar Tendinopathy: A Cross-Sectional Study. Ultrason. Imaging 2023, 45, 47–61. [Google Scholar] [CrossRef]
- Molina-Payá, J.; Ríos-Díaz, J.; Martínez-Payá, J. Inter and Intraexaminer Reliability of a New Method of Infrared Thermography Analysis of Patellar Tendon. Quant. InfraRed Thermogr. J. 2021, 18, 127–139. [Google Scholar] [CrossRef]
- Viana, J.R.; Campos, D.; Ulbricht, L.; Sato, G.Y.; Ripka, W.L. Thermography for the Detection of Secondary Raynaud’s Phenomenon by Means of the Distal-Dorsal Distance. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1528–1531. [Google Scholar] [CrossRef]
- Gómez-Carmona, P.; Fernández-Cuevas, I.; Sillero-Quintana, M.; Arnaiz-Lastras, J.; Navandar, A. Infrared Thermography Protocol on Reducing the Incidence of Soccer Injuries. J. Sport Rehabil. 2020, 29, 1222–1227. [Google Scholar] [CrossRef]
- Majano, C.; García-Unanue, J.; Hernandez-Martin, A.; Sánchez-Sánchez, J.; Gallardo, L.; Felipe, J.L. Relationship between Repeated Sprint Ability, Countermovement Jump and Thermography in Elite Football Players. Sensors 2023, 23, 631. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Júnior, J.L.; Duarte, W.; Falqueto, H.; Andrade, A.G.P.; Morandi, R.F.; Albuquerque, M.R.; de Assis, M.G.; Serpa, T.K.F.; Pimenta, E.M. Correlation between Strength and Skin Temperature Asymmetries in the Lower Limbs of Brazilian Elite Soccer Players before and after a Competitive Season. J. Therm. Biol. 2021, 99, 102919. [Google Scholar] [CrossRef]
- Yeste-Fabregat, M.; Baraja-Vegas, L.; Vicente-Mampel, J.; Pérez-Bermejo, M.; Bautista González, I.J.; Barrios, C. Acute Effects of Tecar Therapy on Skin Temperature, Ankle Mobility and Hyperalgesia in Myofascial Pain Syndrome in Professional Basketball Players: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 8756. [Google Scholar] [CrossRef]
- Martínez-Noguera, F.J.; Cabizosu, A.; Marín-Pagan, C.; Alcaraz, P.E. Body Surface Profile in Ambient and Hot Temperatures during a Rectangular Test in Race Walker Champions of the World Cup in Oman 2022. J. Therm. Biol. 2023, 114, 103548. [Google Scholar] [CrossRef]
- Racinais, S.; Ihsan, M.; Taylor, L.; Cardinale, M.; Adami, P.E.; Alonso, J.M.; Bouscaren, N.; Buitrago, S.; Esh, C.J.; Gomez-Ezeiza, J.; et al. Hydration and Cooling in Elite Athletes: Relationship with Performance, Body Mass Loss and Body Temperatures during the Doha 2019 IAAF World Athletics Championships. Br. J. Sports Med. 2021, 55, 1335–1341. [Google Scholar] [CrossRef]
- Racinais, S.; Havenith, G.; Aylwin, P.; Ihsan, M.; Taylor, L.; Adami, P.E.; Adamuz, M.-C.; Alhammoud, M.; Alonso, J.M.; Bouscaren, N.; et al. Association between Thermal Responses, Medical Events, Performance, Heat Acclimation and Health Status in Male and Female Elite Athletes during the 2019 Doha World Athletics Championships. Br. J. Sports Med. 2022, 56, 439–445. [Google Scholar] [CrossRef]
- Rodriguez-Sanz, D.; Losa-Iglesias, M.E.; Becerro-de-Bengoa-Vallejo, R.; Dorgham, H.A.A.; Benito-de-Pedro, M.; San-Antolín, M.; Mazoteras-Pardo, V.; Calvo-Lobo, C. Thermography Related to Electromyography in Runners with Functional Equinus Condition after Running. Phys. Ther. Sport Off. J. Assoc. Chart. Physiother. Sports Med. 2019, 40, 193–196. [Google Scholar] [CrossRef]
- Priego-Quesada, J.I.; Pérez-Guarner, A.; Gandia-Soriano, A.; Oficial-Casado, F.; Galindo, C.; Cibrián Ortiz de Anda, R.M.; Piñeiro-Ramos, J.D.; Sánchez-Illana, Á.; Kuligowski, J.; Gomes Barbosa, M.A.; et al. Effect of a Marathon on Skin Temperature Response After a Cold-Stress Test and Its Relationship with Perceptive, Performance, and Oxidative-Stress Biomarkers. Int. J. Sports Physiol. Perform. 2020, 15, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Priego-Quesada, J.I.; Catalá-Vilaplana, I.; Bermejo-Ruiz, J.L.; Gandia-Soriano, A.; Pellicer-Chenoll, M.T.; Encarnación-Martínez, A.; Cibrián Ortiz de Anda, R.; Salvador-Palmer, R. Effect of 10 Km Run on Lower Limb Skin Temperature and Thermal Response after a Cold-Stress Test over the Following 24 h. J. Therm. Biol. 2022, 105, 103225. [Google Scholar] [CrossRef]
- Serantoni, V.; Jourdan, F.; Louche, H.; Sultan, A. Proposal for a Protocol Using an Infrared Microbolometer Camera and Wavelet Analysis to Study Foot Thermoregulation. Quant. InfraRed Thermogr. J. 2021, 18, 73–91. [Google Scholar] [CrossRef]
- Özdil, A.; Yılmaz, B. Automatic Body Part and Pose Detection in Medical Infrared Thermal Images. Quant. InfraRed Thermogr. J. 2022, 19, 223–238. [Google Scholar] [CrossRef]
- Machado, Á.S.; Priego-Quesada, J.I.; Jimenez-Perez, I.; Gil-Calvo, M.; Carpes, F.P.; Perez-Soriano, P. Influence of Infrared Camera Model and Evaluator Reproducibility in the Assessment of Skin Temperature Responses to Physical Exercise. J. Therm. Biol. 2021, 98, 102913. [Google Scholar] [CrossRef]
- Formenti, D.; Ludwig, N.; Gargano, M.; Gondola, M.; Dellerma, N.; Caumo, A.; Alberti, G. Thermal Imaging of Exercise-Associated Skin Temperature Changes in Trained and Untrained Female Subjects. Ann. Biomed. Eng. 2013, 41, 863–871. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Tomás-Carús, P.; Timón, R.; Batalha, N.; Sánchez-Ureña, B.; Gutiérrez-Vargas, R.; Olcina, G. Short-Term Skin Temperature Responses to Endurance Exercise: A Systematic Review of Methods and Future Challenges in the Use of Infrared Thermography. Life 2021, 11, 1286. [Google Scholar] [CrossRef]
- Čoh, M.; Širok, B. Use of the Thermovision Method in Sport Training. Phys. Educ. Sport 2007, 5, 85–94. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Cabizosu, A.; Carboni, N.; Martínez-Almagro Andreo, A.; Casu, G.; Ramón Sánchez, C.; Vegara-Meseguer, J.M. Relationship between Infrared Skin Radiation and Muscular Strength Tests in Patients Affected by Emery-Dreifuss Muscular Dystrophy. Med. Hypotheses 2020, 138, 109592. [Google Scholar] [CrossRef]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic Imaging in Sports and Exercise Medicine: A Delphi Study and Consensus Statement on the Measurement of Human Skin Temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef]
- Bouzas Marins, J.C.; de Andrade Fernandes, A.; Gomes Moreira, D.; Souza Silva, F.; Magno, A.; Costa, C.; Pimenta, E.M.; Sillero-Quintana, M. Thermographic profile of soccer players’ lower limbs. Rev. Andal. Med. Deporte 2014, 7, 1–6. [Google Scholar] [CrossRef]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; De Ridder, J. International Standards for Anthropometric Assessment; ISAK: Brasilia, Brazil, 2011; Volume 137, ISBN 978-0-620-36207-8. [Google Scholar]
- Faulkner, J.A. Physiology of Swimming. Res. Q. 1966, 37, 41–54. [Google Scholar] [CrossRef]
- Norton, K. Antropometrica; Spanish Version of Anthropometrica; Norton, K., Olds, T., Eds.; BIOSYSTEM Servicio Educativo: Rosario, Argentina, 1995. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Reprint; Psychology Press: New York, NY, USA, 2009; ISBN 978-0-8058-0283-2. [Google Scholar]
- Cuddy, J.S.; Hailes, W.S.; Ruby, B.C. A Reduced Core to Skin Temperature Gradient, Not a Critical Core Temperature, Affects Aerobic Capacity in the Heat. J. Therm. Biol. 2014, 43, 7–12. [Google Scholar] [CrossRef]
- Adamczyk, J.G.; Boguszewski, D.; Siewierski, M. Thermographic Evaluation of Lactate Level in Capillary Blood During Post-Exercise Recovery. Kinesiology 2014, 46, 186–193. [Google Scholar]
- Rynkiewicz, M.; Korman, P.; Zurek, P.; Rynkiewicz, T. Application of Thermovisual Body Image Analysis in the Evaluation of Paddling Effects on a Kayak Ergometer. Med. Dello Sport 2015, 68, 31–42. [Google Scholar]
- Priego Quesada, J.I.; Martinez, N.; Salvador-Palmer, R.; Psikuta, A.; Annaheim, S.; Rossi, R.; Corberan, J.; Cibrian, R.; Perez-Soriano, P. Effects of the Cycling Workload on Core and Local Skin Temperatures. Exp. Therm. Fluid Sci. 2016, 77, 91–99. [Google Scholar] [CrossRef]
- Weigert, M.; Nitzsche, N.; Kunert, F.; Lösch, C.; Baumgärtel, L.; Schulz, H. Acute Exercise-Associated Skin Surface Temperature Changes after Resistance Training with Different Exercise Intensities. Int. J. Kinesiol. Sports Sci. 2018, 6, 12–18. [Google Scholar] [CrossRef]
- Fernández-Cuevas, I.; Torres, G.; Sillero-Quintana, M.; Navandar, A. Thermographic Assessment of Skin Response to Strength Training in Young Participants. J. Therm. Anal. Calorim. 2023, 148, 3407–3415. [Google Scholar] [CrossRef]
- Robles Dorado, V. Variaciones termométricas en la planta del pie y piernas valorada en corredores antes y después de correr 30 km. Rev. Int. Cienc. Podol. 2016, 10, 31–40. [Google Scholar] [CrossRef]
- Joyner, M.J.; Casey, D.P. Regulation of Increased Blood Flow (Hyperemia) to Muscles during Exercise: A Hierarchy of Competing Physiological Needs. Physiol. Rev. 2015, 95, 549–601. [Google Scholar] [CrossRef]
- Rowell, L.B. Blood Pressure Regulation during Exercise. Ann. Med. 1991, 23, 329–333. [Google Scholar] [CrossRef]
- Fritzsche, R.G.; Coyle, E.F. Cutaneous Blood Flow during Exercise Is Higher in Endurance-Trained Humans. J. Appl. Physiol. 2000, 88, 738–744. [Google Scholar] [CrossRef]
- Neves, E.; Cunha, R.; Rosa, C.; Antunes, N.; Felisberto, I.; Alves, J.; Reis, V. Correlation between Skin Temperature and Heart Rate during Exercise and Recovery, and the Influence of Body Position in These Variables in Untrained Women. Infrared Phys. Technol. 2016, 75, 70–76. [Google Scholar] [CrossRef]
- Al-Nakhli, H.H.; Petrofsky, J.S.; Laymon, M.S.; Berk, L.S. The Use of Thermal Infra-Red Imaging to Detect Delayed Onset Muscle Soreness. J. Vis. Exp. 2012, 59, 3551. [Google Scholar] [CrossRef]
- Priego Quesada, J.I.; Carpes, F.P.; Bini, R.R.; Salvador Palmer, R.; Pérez-Soriano, P.; Cibrián Ortiz de Anda, R.M. Relationship between Skin Temperature and Muscle Activation during Incremental Cycle Exercise. J. Therm. Biol. 2015, 48, 28–35. [Google Scholar] [CrossRef]
- Silva, Y.A.; Santos, B.H.; Andrade, P.R.; Santos, H.H.; Moreira, D.G.; Sillero-Quintana, M.; Ferreira, J.J.A. Skin Temperature Changes after Exercise and Cold Water Immersion. Sport Sci. Health 2017, 13, 195–202. [Google Scholar] [CrossRef]
- Escamilla-Galindo, V.L.; Estal-Martínez, A.; Adamczyk, J.G.; Brito, C.J.; Arnaiz-Lastras, J.; Sillero-Quintana, M. Skin Temperature Response to Unilateral Training Measured with Infrared Thermography. J. Exerc. Rehabil. 2017, 13, 526–534. [Google Scholar] [CrossRef]
- Valdes, O.; Ramirez, C.; Perez, F.; Garcia-Vicencio, S.; Nosaka, K.; Penailillo, L. Contralateral Effects of Eccentric Resistance Training on Immobilized Arm. Scand. J. Med. Sci. Sports 2021, 31, 76–90. [Google Scholar] [CrossRef]
- Benito-Martínez, E.; Senovilla-Herguedas, D.; de la Torre-Montero, J.C.; Martínez-Beltrán, M.J.; Reguera-García, M.M.; Alonso-Cortés, B. Local and Contralateral Effects after the Application of Neuromuscular Electrostimulation in Lower Limbs. Int. J. Environ. Res. Public Health 2020, 17, 9028. [Google Scholar] [CrossRef]
- Carroll, T.J.; Herbert, R.D.; Munn, J.; Lee, M.; Gandevia, S.C. Contralateral Effects of Unilateral Strength Training: Evidence and Possible Mechanisms. J. Appl. Physiol. 2006, 101, 1514–1522. [Google Scholar] [CrossRef]
- Dindorf, C.; Bartaguiz, E.; Janowicz, E.; Fröhlich, M.; Ludwig, O. Effects of Unilateral Muscle Fatigue on Thermographic Skin Surface Temperature of Back and Abdominal Muscles-A Pilot Study. Sports 2022, 10, 41. [Google Scholar] [CrossRef]
- Binek, M.; Drzazga, Z.; Teresa, S.; Pokora, I. Do Exist Gender Differences in Skin Temperature of Lower Limbs Following Exercise Test in Male and Female Cross-Country Skiers? J. Therm. Anal. Calorim. 2022, 147, 7373–7383. [Google Scholar] [CrossRef]
- Oliveira, S.; Oliveira, F.; Marins, J.; Gomes, A.; Silva, A.; Brito, C.; Gomes Moreira, D.; Quintana, M. Original Article Measuring of Skin Temperature via Infrared Thermography after an Upper Body Progressive Aerobic Exercise. J. Phys. Educ. Sport 2018, 18, 184–192. [Google Scholar] [CrossRef]
- Alburquerque Santana, P.V.; Alvarez, P.D.; Felipe da Costa Sena, A.; Serpa, T.K.; de Assis, M.G.; Pimenta, E.M.; Costa, H.A.; Sevilio de Oliveira Junior, M.N.; Torres Cabido, C.E.; Veneroso, C.E. Relationship between Infrared Thermography and Muscle Damage Markers in Physically Active Men after Plyometric Exercise. J. Therm. Biol. 2022, 104, 103187. [Google Scholar] [CrossRef]
- da Silva, W.; Machado, Á.S.; Souza, M.A.; Kunzler, M.R.; Priego-Quesada, J.I.; Carpes, F.P. Can Exercise-Induced Muscle Damage Be Related to Changes in Skin Temperature? Physiol. Meas. 2018, 39, 104007. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Gutiérrez-Vargas, R.; Sánchez-Ureña, B.; Gutiérrez-Vargas, J.C.; Priego-Quesada, J.I. Relationship between Skin Temperature Variation and Muscle Damage Markers after a Marathon Performed in a Hot Environmental Condition. Life 2021, 11, 725. [Google Scholar] [CrossRef]
- Kjaer, M.; Langberg, H.; Miller, B.F.; Boushel, R.; Crameri, R.; Koskinen, S.; Heinemeier, K.; Olesen, J.L.; Døssing, S.; Hansen, M.; et al. Metabolic Activity and Collagen Turnover in Human Tendon in Response to Physical Activity. J. Musculoskelet. Neuronal Interact. 2005, 5, 41–52. [Google Scholar]
- Kubo, K.; Ikebukuro, T. Blood Circulation of Patellar and Achilles Tendons during Contractions and Heating. Med. Sci. Sports Exerc. 2012, 44, 2111. [Google Scholar] [CrossRef]
- Kubo, K.; Ikebukuro, T.; Yaeshima, K.; Kanehisa, H. Effects of Different Duration Contractions on Elasticity, Blood Volume, and Oxygen Saturation of Human Tendon in Vivo. Eur. J. Appl. Physiol. 2009, 106, 445–455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabizosu, A.; Marín-Pagán, C.; Martínez-Serrano, A.; Alcaraz, P.E.; Martínez-Noguera, F.J. Myotendinous Thermoregulation in National Level Sprinters after a Unilateral Fatigue Acute Bout—A Descriptive Study. Sensors 2023, 23, 9330. https://doi.org/10.3390/s23239330
Cabizosu A, Marín-Pagán C, Martínez-Serrano A, Alcaraz PE, Martínez-Noguera FJ. Myotendinous Thermoregulation in National Level Sprinters after a Unilateral Fatigue Acute Bout—A Descriptive Study. Sensors. 2023; 23(23):9330. https://doi.org/10.3390/s23239330
Chicago/Turabian StyleCabizosu, Alessio, Cristian Marín-Pagán, Antonio Martínez-Serrano, Pedro E. Alcaraz, and Francisco Javier Martínez-Noguera. 2023. "Myotendinous Thermoregulation in National Level Sprinters after a Unilateral Fatigue Acute Bout—A Descriptive Study" Sensors 23, no. 23: 9330. https://doi.org/10.3390/s23239330
APA StyleCabizosu, A., Marín-Pagán, C., Martínez-Serrano, A., Alcaraz, P. E., & Martínez-Noguera, F. J. (2023). Myotendinous Thermoregulation in National Level Sprinters after a Unilateral Fatigue Acute Bout—A Descriptive Study. Sensors, 23(23), 9330. https://doi.org/10.3390/s23239330