Domain-Specific Processing Stage for Estimating Single-Trail Evoked Potential Improves CNN Performance in Detecting Error Potential
Abstract
:1. Introduction
1.1. ErrP Classification by NN
1.2. Single Trial-Estimation
1.3. Aim of This Study
2. Materials and Methods
2.1. EEG Dataset
2.2. Data Preprocessing
2.3. Single-Trial Estimation
2.3.1. Subspace Regularization
2.3.2. ARX Modeling
2.3.3. Continuous Wavelet Transform
2.4. Classification
2.4.1. EEGNet
2.4.2. L–CNN
2.4.3. Siamese Neural Network
2.4.4. Hyperparameter Optimization
2.4.5. Performance Metrics
3. Results
3.1. Classification Performance
3.1.1. EEGNet
3.1.2. L-CNN
3.1.3. Siamese Neural Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ErrP | Error Potential |
CNN | Convolutional Neural Network |
DNN | Deep Convolutional Neural Network |
BCI | Brain–Computer Interface |
EEG | Electroencephalography |
EP | Evoked Potential |
ST | Single Trial |
SNR | Signal-to-Noise Ratio |
CAR | Common Average Reference |
CWT | Continuous Wavelet Transform |
DWT | Dyadic Wavelet Transform |
References
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef] [PubMed]
- Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A comprehensive review of EEG-based brain–computer interface paradigms. J. Neural Eng. 2019, 16, 011001. [Google Scholar] [CrossRef] [PubMed]
- Seno, B.D.; Matteucci, M.; Mainardi, L. Online detection of P300 and error potentials in a BCI speller. Comput. Intell. Neurosci. 2010, 2010, 307254. [Google Scholar] [CrossRef]
- Gemba, H.; Sasaki, K.; Brooks, V. ‘Error’ potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning. Neurosci. Lett. 1986, 70, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Falkenstein, M.; Hoormann, J.; Christ, S.; Hohnsbein, J. ERP components on reaction errors and their functional significance: A tutorial. Biol. Psychol. 2000, 51, 87–107. [Google Scholar] [CrossRef]
- Cruz, A.; Pires, G.; Nunes, U.J. Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 26–36. [Google Scholar] [CrossRef]
- Marathe, A.R.; Ries, A.J.; McDowell, K. Sliding HDCA: Single-Trial EEG Classification to Overcome and Quantify Temporal Variability. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 201–211. [Google Scholar] [CrossRef]
- Ouyang, G.; Hildebrandt, A.; Sommer, W.; Zhou, C. Exploiting the intra-subject latency variability from single-trial event-related potentials in the P3 time range: A review and comparative evaluation of methods. Neurosci. Biobehav. Rev. 2017, 75, 1–21. [Google Scholar] [CrossRef]
- Bellary, S.A.S.; Conrad, J.M. Classification of Error Related Potentials using Convolutional Neural Networks. In Proceedings of the 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 10–11 January 2019; pp. 245–249. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
- Torres, J.M.M.; Clarkson, T.; Stepanov, E.A.; Luhmann, C.C.; Lerner, M.D.; Riccardi, G. Enhanced Error Decoding from Error-Related Potentials using Convolutional Neural Networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 360–363. [Google Scholar] [CrossRef]
- Luo, T.; Fan, Y.; Lv, J.; Zhou, C. Deep reinforcement learning from error-related potentials via an EEG-based brain-computer interface. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 697–701. [Google Scholar]
- Shahtalebi, S.; Asif, A.; Mohammadi, A. Siamese Neural Networks for EEG-based Brain-computer Interfaces. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 442–446. [Google Scholar] [CrossRef]
- Delorme, A.; Miyakoshi, M.; Jung, T.-P.; Makeig, S. Grand average ERP-image plotting and statistics: A method for comparing variability in event-related single-trial EEG activities across subjects and conditions. J. Neurosci. Methods 2015, 250, 3–6. [Google Scholar] [CrossRef]
- Gaspar, C.M.; Rousselet, G.A.; Pernet, C.R. Reliability of ERP and single-trial analyses. NeuroImage 2011, 58, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Mainardi, L.T.; Kupila, J.; Nieminen, K.; Korhonen, I.; Bianchi, A.M.; Pattini, L.; Takala, J.; Karhu, J.; Cerutti, S. Single sweep analysis of event related auditory potentials for the monitoring of sedation in cardiac surgery patients. Comput. Methods Programs Biomed. 2000, 63, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Donoho, D. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Karjalainen, P.A.; Kaipio, J.P.; Koistinen, A.S.; Vauhkonen, M. Subspace regularization method for the single-trial estimation of evoked potentials. IEEE Trans. Biomed. Eng. 1999, 46, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, S.; Baselli, G.; Liberati, D.; Pavesi, G. Single sweep analysis of visual evoked potentials through a model of parametric identification. Biol. Cybern. 1987, 56, 111–120. [Google Scholar] [CrossRef] [PubMed]
- BNCI Horizon 2020. Available online: http://bnci-horizon-2020.eu/database/dataset (accessed on 1 October 2023).
- Chavarriaga, R.; Millan, J.d.R. Learning From EEG Error-Related Potentials in Noninvasive Brain-Computer Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 381–388. [Google Scholar] [CrossRef]
- Ferrez, P.W.; Millan, J.d.R. Error-Related EEG Potentials Generated During Simulated Brain–Computer Interaction. IEEE Trans. Biomed. Eng. 2008, 55, 923–929. [Google Scholar] [CrossRef]
- Ahmadi, M.; Quiroga, R.Q. Automatic denoising of single-trial evoked potentials. NeuroImage 2013, 66, 672–680. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Orrite, C.; Rodríguez, M.; Martínez, F.; Fairhurst, M. Classifier Ensemble Generation for the Majority Vote Rule. Prog. Pattern Recognit. Image Anal. Appl. 2008, 5197, 340–347. [Google Scholar]
- Farabbi, A.; Aloia, V.; Mainardi, L. ARX-based EEG data balancing for error potential BCI. J. Neural Eng. 2022, 19, 3. [Google Scholar] [CrossRef] [PubMed]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2017, arXiv:1610.02357. [Google Scholar]
- Dal Seno, B.; Matteucci, M.; Mainardi, L.T. The Utility Metric: A Novel Method to Assess the Overall Performance of Discrete Brain–Computer Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Minthe, A.; Janzarik, W.G.; Lachner-Piza, D.; Reinacher, P.; Schulze-Bonhage, A.; Dümpelmann, M.; Jacobs, J. Stable high frequency background EEG activity distinguishes epileptic from healthy brain regions. Brain Commun. 2020, 2, fcaa107. [Google Scholar] [CrossRef]
- Stovall, T.; Hunt, B.; Glynn, S.; Stacey, W.C.; Gliske, S.V. Interictal high frequency background activity as a biomarker of epileptogenic tissue. Brain Commun. 2021, 3, fcab188. [Google Scholar] [CrossRef]
- Farabbi, A.; Mainardi, L. The Subspace Regularization Method Improves ErrP Detection by EEGNET in BCI Experiments. In Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2023)—Volume 4: BIOSIGNALS, Lisbon, Portugal, 16–18 February 2023; pp. 260–264. [Google Scholar] [CrossRef]
First Cycle | Second Cycle | Third Cycle | Fourth Cycle |
---|---|---|---|
learning rate | pooling layer | dropout rate | |
iterative method | dropout layer | conv layers size | momentum |
batch size | activation layer | (F1, D, F2) | learning decay |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farabbi, A.; Mainardi, L. Domain-Specific Processing Stage for Estimating Single-Trail Evoked Potential Improves CNN Performance in Detecting Error Potential. Sensors 2023, 23, 9049. https://doi.org/10.3390/s23229049
Farabbi A, Mainardi L. Domain-Specific Processing Stage for Estimating Single-Trail Evoked Potential Improves CNN Performance in Detecting Error Potential. Sensors. 2023; 23(22):9049. https://doi.org/10.3390/s23229049
Chicago/Turabian StyleFarabbi, Andrea, and Luca Mainardi. 2023. "Domain-Specific Processing Stage for Estimating Single-Trail Evoked Potential Improves CNN Performance in Detecting Error Potential" Sensors 23, no. 22: 9049. https://doi.org/10.3390/s23229049
APA StyleFarabbi, A., & Mainardi, L. (2023). Domain-Specific Processing Stage for Estimating Single-Trail Evoked Potential Improves CNN Performance in Detecting Error Potential. Sensors, 23(22), 9049. https://doi.org/10.3390/s23229049