Dual-Lifetime Referencing (t-DLR) Optical Fiber Fluorescent pH Sensor for Microenvironments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Iminocoumarin Synthesis and Encapsulation of Ru(dpp)3 in PAN
2.3. Dual-Layer Sol-Gel pH-Sensing Coating
2.4. The t-DLR Interrogation System
2.4.1. pH Measurement Based on the t-DLR Principle
2.4.2. t-DLR instrumentation and Dual-Layer pH Sensor Response to pH Variation
2.5. Characterization of the Optical Fiber Fluorescent pH Sensor
2.5.1. Photostability and Indicator Leaching of the pH Sensor
2.5.2. The Usable Lifetime of the pH Sensor
2.5.3. pH Sensor Response Time
2.5.4. Determination of Apparent pKa’ and LOD of the Dual-Layer pH Sensor via Inverse Calibration
2.5.5. Investigation of Environmental Influences on the pH Sensor
2.5.6. Sensor Precision and Accuracy
2.5.7. pH Measurement within the DBL of Ulva sp.
3. Results
3.1. Photostability and Indicator Leaching Investigation of the Dual-Layer pH Sensor
3.2. Investigation of the Usable Lifetime of the pH Sensor
3.3. Sensor Response Time
3.4. Apparent pKa and LOD of the Dual-Layer pH Sensor
3.5. Sensitivity to Temperature and Salinity
3.6. Sensor Precision and Accuracy
3.7. Real-Time pH Measurement of the Ulva sp. DBL Interface
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Hogberg, P.; Linder, S.; et al. The global carbon cycle: A test of our knowledge of earth as a system. Science 2000, 290, 291–296. [Google Scholar] [CrossRef]
- Council, N.R. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean; The National Academies Press: Washington, DC, USA, 2010; p. 200. [Google Scholar] [CrossRef]
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.S.; Wallace, D.W.; Tilbrook, B.; et al. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef]
- Raven, J.; Caldeira, K.; Elderfield, H.; Hoegh-Guldberg, O.; Liss, P.; Riebesell, U.; Shepherd, J.; Turley, C.; Watson, A. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide; The Royal Society: London, UK, 2005. [Google Scholar]
- Caldeira, K.; Wickett, M.E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. Ocean. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Feely, R.A.; Sabine, C.L.; Lee, K.; Berelson, W.; Kleypas, J.; Fabry, V.J.; Millero, F.J. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 2004, 305, 362–366. [Google Scholar] [CrossRef]
- Thomsen, J.; Haynert, K.; Wegner, K.M.; Melzner, F. Impact of seawater carbonate chemistry on the calcification of marine bivalves. Biogeosciences 2015, 12, 4209–4220. [Google Scholar] [CrossRef]
- Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: How far have we come? Can. J. Zool. 2019, 97, 399–408. [Google Scholar] [CrossRef]
- Kleypas, J.A.; Feely, R.A.; Fabry, V.J.; Langdon, C.; Sabine, C.L.; Robbins, L.L. Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research. Rep. A Workshop Held 2005, 18, 20. [Google Scholar]
- Noisette, F.; Hurd, C. Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Funct. Ecol. 2018, 32, 1329–1342. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Hurd, C.L. Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation. Phycologia 2019, 58, 552–562. [Google Scholar] [CrossRef]
- Saderne, V.; Fietzek, P.; Aßmann, S.; Körtzinger, A.; Hiebenthal, C. Seagrass beds as ocean acidification refuges for mussels? High resolution measurements of pCO2 and O2 in a Zostera marina and Mytilus edulis mosaic habitat. Biogeosci. Discuss. 2015, 2015, 11423–11461. [Google Scholar] [CrossRef]
- Cornwall, C.E.; Boyd, P.W.; McGraw, C.M.; Hepburn, C.D.; Pilditch, C.A.; Morris, J.N.; Smith, A.M.; Hurd, C.L. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 2014, 9, e97235. [Google Scholar] [CrossRef]
- Hurd, C.L.; Lenton, A.; Tilbrook, B.; Boyd, P.W. Current understanding and challenges for oceans in a higher-CO2 world. Nat. Clim. Change 2018, 8, 686–694. [Google Scholar] [CrossRef]
- Law, C.S.; Bell, J.J.; Bostock, H.C.; Cornwall, C.E.; Cummings, V.J.; Currie, K.; Davy, S.K.; Gammon, M.; Hepburn, C.D.; Hurd, C.L.; et al. Ocean acidification in New Zealand waters: Trends and impacts. N. Z. J. Mar. Freshw. Res. 2017, 52, 155–195. [Google Scholar] [CrossRef]
- Marshall, K.N.; Kaplan, I.C.; Hodgson, E.E.; Hermann, A.; Busch, D.S.; McElhany, P.; Essington, T.E.; Harvey, C.J.; Fulton, E.A. Risks of ocean acidification in the California Current food web and fisheries: Ecosystem model projections. Glob. Change Biol. 2017, 23, 1525–1539. [Google Scholar] [CrossRef]
- Dutkiewicz, S.; Morris, J.J.; Follows, M.J.; Scott, J.; Levitan, O.; Dyhrman, S.T.; Berman-Frank, I. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Change 2015, 5, 1002–1006. [Google Scholar] [CrossRef]
- Lemasson, A.J.; Fletcher, S.; Hall-Spencer, J.M.; Knights, A.M. Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: A review. J. Exp. Mar. Biol. Ecol. 2017, 492, 49–62. [Google Scholar] [CrossRef]
- Fabry, V.J.; Seibel, B.A.; Feely, R.A.; Orr, J.C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 2008, 65, 414–432. [Google Scholar] [CrossRef]
- Page, H.N.; Hewett, C.; Tompkins, H.; Hall, E.R. Ocean Acidification and Direct Interactions Affect Coral, Macroalga, and Sponge Growth in the Florida Keys. J. Mar. Sci. Eng. 2021, 9, 739. [Google Scholar] [CrossRef]
- Comeau, S.; Cornwall, C.E.; Pupier, C.A.; De Carlo, T.M.; Alessi, C.; Trehern, R.; McCulloch, M.T. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Rep. 2019, 9, 12829. [Google Scholar] [CrossRef]
- Xiao, X.; Agusti, S.; Yu, Y.; Huang, Y.; Chen, W.; Hu, J.; Li, C.; Li, K.; Wei, F.; Lu, Y.; et al. Seaweed farms provide refugia from ocean acidification. Sci. Total Environ. 2021, 776, 145192. [Google Scholar] [CrossRef]
- Kühl, M.; Cohen, Y.; Dalsgaard, T.; Jørgensen, B.B.; Revsbech, N.P. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 1995, 117, 159–172. [Google Scholar] [CrossRef]
- McNicholl, C.; Koch, M.S.; Hofmann, L.C. Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: A proposed mechanism to sustain calcification under ocean acidification. J. Exp. Mar. Biol. Ecol. 2019, 521, 151208. [Google Scholar] [CrossRef]
- Chan, N.C.S.; Wangpraseurt, D.; Kuhl, M.; Connolly, S.R. Flow and Coral Morphology Control Coral Surface pH: Implications for the Effects of Ocean Acidification. Front. Mar. Sci. 2016, 3, 10. [Google Scholar] [CrossRef]
- Doo, S.S.; Kealoha, A.; Andersson, A.; Cohen, A.L.; Hicks, T.L.; Johnson, Z.I.; Long, M.H.; McElhany, P.; Mollica, N.; Shamberger, K.E.F.; et al. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J. Mar. Sci. 2020, 77, 2411–2422. [Google Scholar] [CrossRef]
- Doney, S.C.; Busch, D.S.; Cooley, S.R.; Kroeker, K.J. The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. Annu. Rev. Environ. Resour. 2020, 45, 83–112. [Google Scholar] [CrossRef]
- De Beer, D.; Bissett, A.; De Wit, R.; Jonkers, H.; Köhler-Rink, S.; Nam, H.; Kim, B.H.; Eickert, G.; Grinstain, M. A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments. Limnol. Oceanogr. Methods 2008, 6, 532–541. [Google Scholar] [CrossRef]
- Al-Horani, F.A. Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci. Mar. 2007, 69, 347–354. [Google Scholar] [CrossRef]
- Cornwall, C.E.; Hepburn, C.D.; Pilditch, C.A.; Hurd, C.L. Concentration boundary layers around complex assemblages of macroalgae: Implications for the effects of ocean acidification on understory coralline algae. Limnol. Oceanogr. 2013, 58, 121–130. [Google Scholar] [CrossRef]
- Cai, W.J.; Ma, Y.; Hopkinson, B.M.; Grottoli, A.G.; Warner, M.E.; Ding, Q.; Hu, X.; Yuan, X.; Schoepf, V.; Xu, H.; et al. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat. Commun. 2016, 7, 11144. [Google Scholar] [CrossRef]
- Pyroscience Sensors. Available online: https://www.pyroscience.com/en/products/all-sensors/attributes/Oxygen,Contactless-readout,Sensor-spots (accessed on 19 October 2022).
- Unisense O2 Microsensor. Available online: https://unisense.com/products/o2-microsensor/ (accessed on 20 October 2022).
- Podrazky, O.; Mrazek, J.; Probostova, J.; Vytykacova, S.; Kasik, I.; Pitrova, S.; Jasim, A.A. Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor. Sensors 2021, 21, 5075. [Google Scholar] [CrossRef]
- Pendao, C.; Silva, I. Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications. Sensors 2022, 22, 7554. [Google Scholar] [CrossRef] [PubMed]
- Pospisilova, M.; Kuncova, G.; Trogl, J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors 2015, 15, 25208–25259. [Google Scholar] [CrossRef] [PubMed]
- Avolio, R.; Grozdanov, A.; Avella, M.; Barton, J.; Cocca, M.; De Falco, F.; Dimitrov, A.T.; Errico, M.E.; Fanjul-Bolado, P.; Gentile, G.; et al. Review of pH sensing materials from macro- to nano-scale: Recent developments and examples of seawater applications. Crit. Rev. Environ. Sci. Tec. 2020, 52, 979–1021. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef]
- Clarke, J.S.; Achterberg, E.P.; Rerolle, V.M.; Abi Kaed Bey, S.; Floquet, C.F.; Mowlem, M.C. Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements. Anal. Chim. Acta 2015, 897, 69–80. [Google Scholar] [CrossRef]
- Larsen, M.; Borisov, S.M.; Grunwald, B.; Klimant, I.; Glud, R.N. A simple and inexpensive high resolution color ratiometric planar optode imaging approach: Application to oxygen and pH sensing. Limnol. Oceanogr. Methods 2011, 9, 348–360. [Google Scholar] [CrossRef]
- Werner, J.; Belz, M.; Klein, K.F.; Sun, T.; Grattan, K.T.V. Characterization of a fast response fiber-optic pH sensor and illustration in a biological application. Analyst 2021, 146, 4811–4821. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Su, C.; Ji, X.; He, Z. New fluorescent pH sensor based on label-free silicon nanodots. Sens. Actuators B Chem. 2014, 203, 795–801. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, R.; Si, P.; Huang, Y.; Sun, H.; Kim, D.H. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle. ACS Appl. Mater. Interfaces 2013, 5, 5856–5860. [Google Scholar] [CrossRef]
- Paghi, A.; Corsi, M.; La Mattina, A.A.; Egri, G.; Dähne, L.; Barillaro, G. Wireless and Flexible Optoelectronic System for In Situ Monitoring of Vaginal pH Using a Bioresorbable Fluorescence Sensor. Adv. Mater. Technol. 2023, 8, 2201600. [Google Scholar] [CrossRef]
- Corsi, M.; Paghi, A.; Mariani, S.; Golinelli, G.; Debrassi, A.; Egri, G.; Leo, G.; Vandini, E.; Vilella, A.; Dahne, L.; et al. Bioresorbable Nanostructured Chemical Sensor for Monitoring of pH Level In Vivo. Adv. Sci. 2022, 9, e2202062. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.A.; Bettencourt, K.; Krulevitch, P.; Hamilton, J.; Glass, R. In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH. Sens. Actuators B-Chem. 2001, 72, 174–179. [Google Scholar] [CrossRef]
- Jorge, P.A.S.; Caldas, P.; Rosa, C.C.; Oliva, A.G.; Santos, J.L. Optical fiber probes for fluorescence based oxygen sensing. Sens. Actuators B-Chem. 2004, 103, 290–299. [Google Scholar] [CrossRef]
- Chen, W.H.; Dillon, W.D.N.; Armstrong, E.A.; Moratti, S.C.; McGraw, C.M. Self-referencing optical fiber pH sensor for marine microenvironments. Talanta 2021, 225, 121969. [Google Scholar] [CrossRef]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical Chemical Sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, L. Preparation and Optimization of Optical pH Sensor Based on Sol-Gel. Sensors 2018, 18, 3195. [Google Scholar] [CrossRef]
- Klimant, I.; Huber, C.; Liebsch, G.; Neurauter, G.; Stangelmayer, A.; Wolfbeis, O.S. Dual Lifetime Referencing (DLR)—A New Scheme for Converting Fluorescence Intensity into a Frequency-Domain or Time-Domain Information. In New Trends in Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2001; Volume 1, pp. 257–274. [Google Scholar]
- Goncalves, H.M.; Maule, C.D.; Jorge, P.A.; Esteves da Silva, J.C. Fiber optic lifetime pH sensing based on ruthenium(II) complexes with dicarboxybipyridine. Anal. Chim. Acta 2008, 626, 62–70. [Google Scholar] [CrossRef]
- Liebsch, G.; Klimant, I.; Krause, C.; Wolfbeis, O.S. Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal. Chem. 2001, 73, 4354–4363. [Google Scholar] [CrossRef]
- Stahl, H.; Glud, A.; Schröder, C.R.; Klimant, I.; Tengberg, A.; Glud, R.N. Time-resolved pH imaging in marine sediments with a luminescent planar optode. Limnol. Oceanogr. Methods 2006, 4, 336–345. [Google Scholar] [CrossRef]
- Schroder, C.R.; Weidgans, B.M.; Klimant, I. pH fluorosensors for use in marine systems. Analyst 2005, 130, 907–916. [Google Scholar] [CrossRef]
- Feng, W.; Gong, S.; Zhou, E.; Yin, X.; Feng, G. Readily prepared iminocoumarin for rapid, colorimetric and ratiometric fluorescent detection of phosgene. Anal. Chim. Acta 2018, 1029, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc. J. Am. Chem. Soc. 2007, 129, 13447–13454. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gong, Y.J. Molecular engineering of an efficient iminocoumarin-based probe for practical sensing applications. Dye. Pigment. 2022, 199, 110054. [Google Scholar] [CrossRef]
- Turki, H.; Abid, S.; Fery-Forgues, S.; El Gharbi, R. Optical properties of new fluorescent iminocoumarins: Part 1. Dye. Pigment. 2007, 73, 311–316. [Google Scholar] [CrossRef]
- Borisov, S.M.; Mayr, T.; Karasyov, A.A.; Klimant, I.; Chojnacki, P.; Moser, C.; Nagl, S.; Schaeferling, M.; Stich, M.I.; Kocincova, A.S. New plastic microparticles and nanoparticles for fluorescent sensing and encoding. In Fluorescence of Supermolecules, Polymers, and Nanosystems; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4, pp. 431–463. [Google Scholar]
- Borisov, S.M.; Mayr, T.; Mistlberger, G.; Waich, K.; Koren, K.; Chojnacki, P.; Klimant, I. Precipitation as a simple and versatile method for preparation of optical nanochemosensors. Talanta 2009, 79, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Kurner, J.M.; Klimant, I.; Krause, C.; Preu, H.; Kunz, W.; Wolfbeis, O.S. Inert phosphorescent nanospheres as markers for optical assays. Bioconjug. Chem. 2001, 12, 883–889. [Google Scholar] [CrossRef]
- Grist, S.M.; Chrostowski, L.; Cheung, K.C. Optical oxygen sensors for applications in microfluidic cell culture. Sensors 2010, 10, 9286–9316. [Google Scholar] [CrossRef]
- Klimant, I.; Meyer, V.; Kühl, M. Fiber-optic oxygen microsensors, a new tool in aquatic biology. Limnol. Oceanogr. 1995, 40, 1159–1165. [Google Scholar] [CrossRef]
- Wang, X.-D.; Meier, R.J.; Wolfbeis, O.S. A Fluorophore-Doped Polymer Nanomaterial for Referenced Imaging of pH and Temperature with Sub-Micrometer Resolution. Adv. Funct. Mater. 2012, 22, 4202–4207. [Google Scholar] [CrossRef]
- Vasylevska, A.S.; Karasyov, A.A.; Borisov, S.M.; Krause, C. Novel coumarin-based fluorescent pH indicators, probes and membranes covering a broad pH range. Anal. Bioanal. Chem. 2007, 387, 2131–2141. [Google Scholar] [CrossRef]
- Kocincova, A.S.; Nagl, S.; Arain, S.; Krause, C.; Borisov, S.M.; Arnold, M.; Wolfbeis, O.S. Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol. Bioeng. 2008, 100, 430–438. [Google Scholar] [CrossRef]
- von Bultzingslowen, C.; McEvoy, A.K.; McDonagh, C.; MacCraith, B.D.; Klimant, I.; Krause, C.; Wolfbeis, O.S. Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst 2002, 127, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Liebsch, G.; Klimant, I.; Wolfbeis, O.S. Luminescence lifetime temperature sensing based on sol-gels and poly(acrylonitrile)s dyed with ruthenium metal-ligand complexes. Adv. Mater. 1999, 11, 1296–1299. [Google Scholar] [CrossRef]
- Viteri, C.R.; Gilliland, J.W.; Yip, W.T. Probing the dynamic guest-host interactions in sol-gel films using single molecule spectroscopy. J. Am. Chem. Soc. 2003, 125, 1980–1987. [Google Scholar] [CrossRef] [PubMed]
- Avnir, D.; Levy, D.; Reisfeld, R. The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine 6G. J. Phys. Chem. 2002, 88, 5956–5959. [Google Scholar] [CrossRef]
- Dubois, A.; Canva, M.; Brun, A.; Chaput, F.; Boilot, J.-P. Enhanced photostability of dye molecules trapped in solid xerogel matrices. Synth. Met. 1996, 81, 305–308. [Google Scholar] [CrossRef]
- Newton, J.A.; Feely, R.A.; Jewett, E.B.; Williamson, P.; Mathis, J. Global Ocean Acidification Observing Network: Requirements and Governance Plan. Second Edition. GOA-ON. 2015. Available online: https://www.iaea.org/sites/default/files/18/06/goa-on-second-edition-2015.pdf (accessed on 30 October 2022).
- Coastal Factsheet Series SEA LETTUCE. Available online: https://www.waikatoregion.govt.nz/assets/WRC/WRC-2019/4797_CFS2016_Sea-lettuce_MR.pdf (accessed on 29 January 2023).
- Roy, R.N.; Roy, L.N.; Vogel, K.M.; Porter-Moore, C.; Pearson, T.; Good, C.E.; Millero, F.J.; Campbell, D.M. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45 °C. Mar. Chem. 1993, 44, 249–267. [Google Scholar] [CrossRef]
- Dickson, A.G. pH Buffers for Sea-Water Media Based on the Total Hydrogen-Ion Concentration Scale. Deep-Sea Res. Pt. I 1993, 40, 107–118. [Google Scholar] [CrossRef]
- Pratt, K.W. Measurement of pHT values of Tris buffers in artificial seawater at varying mole ratios of Tris:Tris·HCl. Mar. Chem. 2014, 162, 89–95. [Google Scholar] [CrossRef]
- Dickson, A.G.; Sabine, C.L.; Christian, J.R. Guide to Best Practices for Ocean CO2 Measurements; PICES Special Publication: Newbury, UK, 2007; p. 191. [Google Scholar]
- Rajagopal, R.; Shenoy, V.U.; Padmanabhan, S.; Sequeira, S.; Seshadri, S. Synthesis of Fluorescent 2,3-Fused Coumarin Derivatives. Dye. Pigment. 1990, 13, 167–175. [Google Scholar] [CrossRef]
- Chemate, S.B.; Sekar, N. Novel Iminocoumarin Derivatives: Synthesis, Spectroscopic and Computational Studies. J. Fluoresc. 2015, 25, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, H.E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512–7515. [Google Scholar] [CrossRef] [PubMed]
- Kostov, Y.; Tzonkov, S.; Yotova, L. Dynamic model of an optical absorption-based pH sensor. Analyst 1993, 118, 987–990. [Google Scholar] [CrossRef]
- Frankaer, C.G.; Sorensen, T.J. A unified approach for investigating chemosensor properties—Dynamic characteristics. Analyst 2019, 144, 2208–2225. [Google Scholar] [CrossRef] [PubMed]
- Dillingham, P.W.; Radu, T.; Diamond, D.; Radu, A.; McGraw, C.M. Bayesian Methods for Ion Selective Electrodes. Electroanalysis 2012, 24, 316–324. [Google Scholar] [CrossRef]
- Besalu, E. The connection between inverse and classical calibration. Talanta 2013, 116, 45–49. [Google Scholar] [CrossRef]
- Tellinghuisen, J. Inverse vs. classical calibration for small data sets. Fresenius J. Anal. Chem. 2000, 368, 585–588. [Google Scholar] [CrossRef]
- Alsaedi, B.S.O.; McGraw, C.M.; Schaerf, T.M.; Dillingham, P.W. Multivariate limit of detection for non-linear sensor arrays. Chemom. Intell. Lab. Syst. 2020, 201, 104016. [Google Scholar] [CrossRef]
- Dillingham, P.W.; Alsaedi, B.S.O.; Granados-Focil, S.; Radu, A.; McGraw, C.M. Establishing Meaningful Limits of Detection for Ion-Selective Electrodes and Other Nonlinear Sensors. ACS Sens. 2020, 5, 250–257. [Google Scholar] [CrossRef]
- New Zealand Sea Temperatures. Available online: https://www.seatemperature.org/australia-pacific/new-zealand/ (accessed on 27 September 2022).
- Dunedin Water Temperature. Available online: https://www.seatemperature.org/australia-pacific/new-zealand/dunedin.htm (accessed on 28 September 2022).
- Currie, K. Ocean Acidification Assessment. Available online: https://environment.govt.nz/assets/publications/ocean-acidification-assessment.pdf (accessed on 24 September 2023).
- Chow, P.K.; Cheng, G.; Tong, G.S.M.; Ma, C.; Kwok, W.M.; Ang, W.H.; Chung, C.Y.; Yang, C.; Wang, F.; Che, C.M. Highly luminescent palladium(ii) complexes with sub-millisecond blue to green phosphorescent excited states. Photocatalysis and highly efficient PSF-OLEDs. Chem. Sci. 2016, 7, 6083–6098. [Google Scholar] [CrossRef]
- Cornwall, C.E.; Hepburn, C.D.; McGraw, C.M.; Currie, K.I.; Pilditch, C.A.; Hunter, K.A.; Boyd, P.W.; Hurd, C.L. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. Biol. Sci. 2013, 280, 20132201. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 2010, 110, 2709–2728. [Google Scholar] [CrossRef] [PubMed]
- Boens, N.; Qin, W.; Basaric, N.; Orte, A.; Talavera, E.M.; Alvarez-Pez, J.M. Photophysics of the fluorescent pH indicator BCECF. J. Phys. Chem. A 2006, 110, 9334–9343. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Prasad, S.; Iuele, H.; Colella, F.; Rizzo, R.; D’Amone, E.; Gigli, G.; Del Mercato, L.L. Highly Sensitive Fluorescent pH Microsensors Based on the Ratiometric Dye Pyranine Immobilized on Silica Microparticles. Chemistry 2021, 27, 13318–13324. [Google Scholar]
- Wencel, D.; MacCraith, B.D.; McDonagh, C. High performance optical ratiometric sol–gel-based pH sensor. Sens. Actuators B Chem. 2009, 139, 208–213. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, C.K. 3-Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids; Nimesh, S., Chandra, R., Gupta, N., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 43–58. [Google Scholar]
- Frankaer, C.G.; Sorensen, T.J. Investigating the Time Response of an Optical pH Sensor Based on a Polysiloxane-Polyethylene Glycol Composite Material Impregnated with a pH-Responsive Triangulenium Dye. ACS Omega 2019, 4, 8381–8389. [Google Scholar] [CrossRef]
λ (nm) | τ (ns) | Φ | ε | Brightness | |||||
---|---|---|---|---|---|---|---|---|---|
ex | em | τ1 | τ2 | * χ2 | (%) | (L mol−1 cm−1) | Φ × ε | ||
Iminocoumarin | Ethanol | 431 | 503 | 2.30 | 1.271 | 57.9 | 52,219 | 30,235 | |
pH 5.0 | 467 | 526 | 1.25 | 4.57 | 1.174 | 58.6 | 51,156 | 29,977 | |
pH 9.0 | 455 | 503 | 1.49 | 5.04 | 1.263 | 80.9 | 43,281 | 35,014 | |
Ru(dpp)3 | Ethanol | 476 | 612 | 6.17 | 30,589 | 1887 | |||
Ru(dpp)3-PAN-SG | pH 8.2 | 468 | 620 | 11.66 | 1.104 | 40.3 |
pHT Changes | Types | t90 | t95 (Sec) | t99 | Drift (Intensity/Min) | The Goodness of Fit (R2) |
---|---|---|---|---|---|---|
8.4→8.8 | pH electrode | 31 | 36 | 48 | 2.0 × 10−5 | 1.0000 |
pH sensor | 29 | 34 | 44 | 1.5 × 10−4 | 0.9964 | |
8.8→8.4 | pH electrode | 28 | 36 | 56 | 2.9 × 10−3 | 0.9969 |
pH sensor | 100 | 129 | 196 | 3.3 × 10−4 | 0.9987 |
pH Sensor | pH Electrode | ||||||||
---|---|---|---|---|---|---|---|---|---|
() | (pHmin | pHmax) | s | N | () | (pHmin | pHmax) | s | N |
8.27 | 8.25 | 8.29 | 0.017 | 8 | 8.28 | 8.28 | 8.28 | 0.001 | 8 |
8.42 | 8.41 | 8.44 | 0.016 | 9 | 8.42 | 8.41 | 8.43 | 0.008 | 9 |
8.73 | 8.71 | 8.76 | 0.025 | 9 | 8.89 | 8.89 | 8.90 | 0.003 | 9 |
9.00 | 8.97 | 9.03 | 0.028 | 9 | 8.97 | 8.97 | 8.98 | 0.006 | 9 |
9.16 | 9.14 | 9.18 | 0.024 | 9 | 9.15 | 9.15 | 9.15 | 0.003 | 9 |
9.29 | 9.28 | 9.30 | 0.011 | 9 | 9.28 | 9.28 | 9.29 | 0.003 | 9 |
9.45 | 9.42 | 9.47 | 0.023 | 8 | 9.46 | 9.45 | 9.46 | 0.004 | 8 |
Precision (spooled) | 0.021 | 7 | 0.005 | 7 | |||||
Accuracy | 0.023 | 7 | Reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-H.; Armstrong, E.; Dillingham, P.W.; Moratti, S.C.; Ennis, C.; McGraw, C.M. Dual-Lifetime Referencing (t-DLR) Optical Fiber Fluorescent pH Sensor for Microenvironments. Sensors 2023, 23, 8865. https://doi.org/10.3390/s23218865
Chen W-H, Armstrong E, Dillingham PW, Moratti SC, Ennis C, McGraw CM. Dual-Lifetime Referencing (t-DLR) Optical Fiber Fluorescent pH Sensor for Microenvironments. Sensors. 2023; 23(21):8865. https://doi.org/10.3390/s23218865
Chicago/Turabian StyleChen, Wan-Har, Evelyn Armstrong, Peter W. Dillingham, Stephen C. Moratti, Courtney Ennis, and Christina M. McGraw. 2023. "Dual-Lifetime Referencing (t-DLR) Optical Fiber Fluorescent pH Sensor for Microenvironments" Sensors 23, no. 21: 8865. https://doi.org/10.3390/s23218865
APA StyleChen, W.-H., Armstrong, E., Dillingham, P. W., Moratti, S. C., Ennis, C., & McGraw, C. M. (2023). Dual-Lifetime Referencing (t-DLR) Optical Fiber Fluorescent pH Sensor for Microenvironments. Sensors, 23(21), 8865. https://doi.org/10.3390/s23218865