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Sensor cost

Table S1. The cost of the main interrogation components typically used in DLR. The total cost for the #-
DLR pH sensor in this work was approximately $3,400 USD.

Methods Typical electronic requirement Cost (USD)
f-DLR [1, 2] Dual-phase lock-in amplifier >$ 6000
t-DLR [3, 4] Pulse generator > $ 4000
Photon counting device and DAC system > $ 4000 to $ 8000
This work:
t-DLR system Electronic components $ 1300
(Optical components) ($2100)
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Table S2. Comparison of iminocoumarin with other commonly used optical sensing fluorescent dyes with
a pH-sensitive range between 6 to 8.

Dye a{ﬁ range) %Ziilll;engiﬁlslt Application Notes Features g\l;lzc]e))
SNARF [1] ~7.5 Aex=514 or 488 nm  Ideal conjugate for Low quantum yield $885 (1 mg)
6.0-8.0 Aem = 580/640 nm ratiometric emission
measurements.
BCECF [2] ~7.0 Aex = 490/440 nm Ideal conjugate for Poor photostability $489 (1 mg)
6.5-7.5 Aem = 530 nm ratiometric excitation
measurements.
CF [3] 6.5 Aex=470 nm High quantum yield in  Hydrophilic, low $101 (1 g)
6.0-8.0 Aem = 492 nm alkali Stokes shifts, sensitive
Aem =514 nm to IS
HPTS [4,5] 54,74 Aex = 465 nm, High quantum yield Hydrophilic, sensitive  $244 (1 g)
(6.0-8.0) hex = 450/405 nm to IS
7\.em =510 nm
Imino- 8.05 (pH 2) High quantum yield Insensitive to IS Laboratory
coumarin (5.0-10.0) Aex = 480, Aem= 520 synthesis
[6] (pH 11)

}\,cx = 430, xcln: 480

CF - 5(6)-Carboxyfluorescein, HPTS - 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, BCECF - 2',7'-Bis(2-carboxyethyl)-
5(6)-carboxyfluorescein, SNARF — seminaphthorhodafluor, SNAFL — seminaphthorfluorescein
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Spectra and structure characterization of iminocoumarin

The melting point of the synthesized iminocoumarin was 239 + 1.3 °C (literature: 238 °C [7]).

# Score Pred. (M) Pred. m/z Meas. m/z Diff. Formulae (M) lon Diff. Iso Score DBE
(mDa) (ppm)
1 56.02 33216371 333.17099 333.17136 0.37 C20 H20 N4 O [M+H]+ 111 51.71 13.0
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Figure S1. HR-MS spectrum of the synthesized iminocoumarin. Measurements were conducted by the
Technical Support Team from the Chemistry Department of the University of Otago.
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IH NMR (500 MHz, TFA-d) § 11.50 (s, 3H), 8.82 (dd, J = 107.5, 5.3 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H),
7.80 (dt, J= 6.7, 3.3 Hz, 2H), 7.74 — 7.65 (m, 2H), 7.62 — 7.55 (m, 2H), 3.77 (q, J = 7.2 Hz, 4H), 1.28 (t, J
=7.2 Hz, 6H).
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Figure S2. 'H-NMR of the synthesized iminocoumarin in TFA-d.

BC-NMR (101 MHz, TFA-d) § 167.78, 154.57, 152.82, 143.26, 137.60, 134.53, 132.59, 122.99, 119.92,
118.89, 117.64, 110.23, 55.68, 13.23.
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Figure S3. *C-NMR of the synthesized iminocoumarin in TFA-d.
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"H-NMR of the fabricated Ru(dpp);-PAN particles

The peaks marked 1 and 2 are oH and BH proton peaks of PAN, respectively. The peaks marked 3 between
chemical shifts, 8.5 to 7.6 ppm are proton peaks of a Ru(dpp); molecule (proton integration H=48). Proton
integration ratio of Ru(dpp)s to PAN (o : B) are 0.02 : (1.00 : 0.50). The '"H NMR of Ru(dpp)s-PAN showed

no DMF peaks [8] at 7.95, 2.89, and 2.75 ppm (Figure S4).
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Figure S4. '"H-NMR (400 MHz) spectrum of Ru(dpp)s;-PAN particles dissolved in DMSO-ds.
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Dynamic light scattering (DLS) characterization of Ru(dpp)s;-PAN particles

The polydispersity index (PDI) of the Ru(dpp);-PAN particles was found to be 0.513, which is within the
range of 0.05 and 0.7 where DLS analysis is considered suitable for measuring the particle size of
suspensions. However, the DLS measurement revealed a broad size distribution of Ru(dpp)s;-PAN,

suggesting the presence of aggregation in the samples as shown by two peaks in the size distribution results
(Figure S5a, Figure S5b).

The zeta potential of the synthesized Ru(dpp);-PAN particles was found to be negative 5.52 + 0.1 mV. Zeta
potential in the range of 0 to 5 mV was described as rapid coagulation or flocculation, and 40 to 60 mV is
regarded as having good stability [9]. Thus, the synthesized Ru(dpp);-PAN with a zeta potential value of
5.52 £ 0.1 mV will likely lead to agglomeration. The synthesized Ru(dpp)s;-PAN particles are probably

composed of individual nanospheres (< 60 nm) held together by electrostatic attraction in the form of
agglomerates.
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Figure S5. Ru(dpp);-PAN size distribution results using DLS measurement are presented as the average
and standard deviation by the (a) intensity and (b) volume.

Fluorescence spectra
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Figure S6. Fluorescence spectra of iminocoumarin showed the indicator was pH-dependent. In a range of
pH buffer solutions, the excitation and emission fluorescence intensity of iminocoumarin increased as pH
increased from 5 to 9 (light to dark).
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Figure S7. Dual-luminophores sol-gel coated glass slide in buffer solutions from pH 5 to 9.5 (IS = 0.7 M)
showed emission peaks at 530 and 610 nm and broad absorbance of 380 to 480 nm. The fluorescence
intensity of the dual luminophores increased as pH increased from pH 5 to 9.5 (light to dark).

Table S3. Ru(dpp);-PAN and iminocoumarin sol-gel blend. The dual-layer pH sensor comprised two sol-

gel coatings, an inner layer of Ru(dpp);-PAN (active Ru(dpp); 0.35 mM), and an outer layer of
iminocoumarin (5.3 mM).

Ru(dpp)3-PAN sol-gel

Iminocoumarin sol-gel

MW Density
(gmol)) (gmL™") (mL)  (gram) (mol) molar ratio (mL) (gram) (mol)  molar ratio

Precursor (1.00) (1.00)

TEOS 208.33 0.933 1.850 8.29x10°3 0.80 1.000 4.48%1073 0.79

DDS 148.28 0.865 0.360 2.10x1073 0.20 0.200 1.17x1073 0.21
Ethanol 46.07 0.789 1.280 2.19x1072 2.11 1.090 1.87%x1072 3.31
Iminocoumarin  332.17 4.80x103 1.44x10°  2.60x1073
Ru(dpp)3;-PAN 9.00x1072
(Ru(dpp)3) 1169.17 (1.76x1073) (1.51x10) (1.45%10*)
Triton X-100 647 1.07 6.10x102  9.43x10°  9.08x1073 3.35x102 5.18x10° 9.20x1073
0.1 M HCI 36.46 0.300 3.00x10°  2.89x1073 0.165 1.65x10°  2.90x1073
Milli-Q 18 1 0455  0.752 4.18x1072 4.03 0.245 0409 2.27x10? 4.02

TOTAL (mL) ~4.3 ~2.7

S7



Optical fibres with sol-gel coatings Entrapped luminophores Film thickness

400 pm optical fibre NA
(bare)

(b) &=
Ru(c%pp)3-PAN sol-gel 5 3um
coating
Immpcoumann sol-gel 13 um
coating

R ErET——
(d D = Two layers of sol-gel
: coatings:
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2™ layer iminocoumarin

Figure S8. The microscope views (obtained with Leica DFC295) of (a) a bare fiber without coating, (b)
Ru(dpp);-PAN sol-gel coating (dip-coating speed: 58 cm min™), (c) iminocoumarin sol-gel coating (dip-
coating speed: 25 cm min™"), and (d) the dual-layer pH sensor with two layers of sol-gel coatings.
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Figure S9. The -DLR instrumentation.
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LED driver

The frequency and time for opening and closing the current diversion were dictated by the frequency and
duty cycle of the AWG. In this case, the set duty cycle was referred to as the completion of an off-on cycle
of the current diversion, which was an inverted on-off cycle with respect to the LED, e.g., with a frequency
of 20 kHz and a duty cycle of 80%, the LED was on for 10 us and off for 40 ps.
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Figure S10. The LED driver circuit diagram (designed by Mr. Paul Reynolds).

The 2-stage PMT amplifier
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Figure S11. The 2-stage PMT amplification circuit diagram (designed by Mr. Paul Reynolds).
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Figure S12. (a) A snapshot of the acquired signal (30,000 pulses). (b) A single on-off profile of the dual-
layer pH sensor (==) was obtained by averaging the 30,000 on-off cycles. The signal of an optical fiber
without luminophores (=) was plotted for comparison. The periods: tex and tem, used to obtain excitation
and emission intensity integration were denoted (...). (¢) Signal appearance after background subtraction.
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Figure S13. The normalized optical spectra of the pH sensor response to pH changes under continual
exposure to the LED for 150 minutes. Highlighted areas indicate the LED (460 to 480 nm), iminocoumarin
(535 to 545 nm), and Ru(dpp); (600 to 620 nm).
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Sensor response time
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Figure S14. (a) The fluorescence optical fiber pH sensor response to pH change in ASW (§ =35, T =20
°C) (==). For reference, pHt measured with a pH electrode (---) is shown. First-order LTI model curve
fitting of the pH sensor (O) (b) from pH 8.4 to 8.8, and (c) from pH 8.8 to 8.4. The pH electrode (---) was
used as a reference. Dotted lines (...) are the fitted curves using the MATLAB algorithm (time-response

model “first-order LTI model” [10, 11]).

Table S4. Reported response time of fluorescence-based pH sensors.

Reference Indicator Matrix Application Response time (s)
Clark, etal. [12] pH sensor spot from Unknown pH optode for seawater (t95) pH 7.2 to 8.5 50
PreSens pH measurement
Larsen, et al. [13] HPTS, Macrolex Polyurethane pH distribution in (#2) pH 6.510 8.9 60
Yellow hydrogel marine sediments
(Hydromed D4)
Schroder, et al. DHFA Polyurethane pH measurement in (to0) pH 8.5t0 7.5 120
[14] DHFAE hydrogel marine environments  (90) pH 7.5 to 8.5 230
Current work Iminocoumarin Sol-gel matrix Optical fiber pH Sensor (f99) pH 8.4 to 8.8 44
Ru(dpp)s-PAN with TEOS and  for marine environments(#s9) pH 8.8 to 8.4 196
DDS
(t05) pH 8.4 to 8.8 34
(t05) pH 8.8 to 8.4 129
(t90) pH 8.4 t0 8.8 29
(t90) pH 8.8 to 8.4 100
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Signal processing without background subtraction

pH titration (pH 6.5 to 10) of ASW (S =35) at 15 °C using the dual-layer pH sensor. Signals were acquired
using a 20 kHz pulse frequency (LED-on for 10 us, LED-off for 40 us).

LED-on LED-off a
16 T H H H ( )

% ; :.# dual-l.?uminophores
Z | 4 Jimeeeemdy€— o luthinophores
= ' i 5
5 i
A~ e
1 1 : I: L T T T 1
0 = 10 w20 30 40 50
Time (us)
100 X107 (b) x107° (c)
[+ o]
00 o 7.7
: ®
5 Q, £ 7610 o
5 99 5761006 00 ©0%gs
9.8 o 00 7.5
° o OO0
9.3 7.4
7 8 9 10 7 8 9 10
pH pH
132 ) ° 95 (e)
o y = 0.5590x + 8.8680
~: & R?=0.9821 :
5131 o
= o 9.0
>< & T
o & .
= 130 &9”
& 4
o® 8.5
129 0%0°
7 8 9 10 -1 0 1
pH log((R R eV R o Row))

Figure S15. (a) The averaged signal of the dual-layer pH sensor and the background signal of an optical
fiber without indicators (plotted as a comparison). The selected LED on and off regions are denoted as (...).
Integration of signal intensity during (b) LED-on (Dc), and (¢) LED-off (Dem). (d) The calculated R values
have a sigmoidal pH response curve. (e) The pK,’ of the pH sensor was determined as 8.87 (§=35, T=15

°C).
Sensor precision

Table S5. Reported optical pH sensors with similar precision to the sensor in this study.

Reference Precision Response time Sensor materials Technique
Schroder, et al. [14]  0.02 <200s DHFA and DHFAE in hydrogel t-DLR/CCD
Wencel, et al. [5] 0.02 12 sec HPTS in sol-gel Ratiometric
Larsen, et al. [13] 0.02 60 sec HPTS and macrolex yellow coumarin in Ratiometric CCD

hydrogel
Current work 0.02  (#90) 29 to 100 sec Iminocoumarin / Ru(dpp);-PAN in sol-gel t-DLR

(#95) 34 to 129 sec
(299) 44 to 196 sec
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