Adaptive Output Containment Tracking Control for Heterogeneous Wide-Area Networks with Aperiodic Intermittent Communication and Uncertain Leaders
Abstract
:1. Introduction
- Distributed hybrid controllers are designed separately for the internal leaders and followers to achieve output containment tracking. Specifically, the distributed aperiodic intermittent controller is designed for the internal leader, whereas the continuous dynamic feedback controller is designed for the follower based on the internal model.
- Sufficient conditions for the exponential stability of the closed-loop system are derived, where intermittent control rate and control parameters are calculated based on the average dwell-time and regulator equations.
2. Preliminaries and Problem Formulation
2.1. Notations
2.2. Communication Network Modeling
2.3. Problem Statement
3. Main Results
3.1. Distributed Hybrid Adaptive Control Strategy
3.2. Error System Modeling
3.3. Output Containment Analysis
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OCC | Output containment control |
Appendix A
Appendix B
References
- Lv, M.; Ahn, C.K.; Zhang, B.; Fu, A. Fixed-Ttime anti-saturation cooperative control for networked fixed-wing unmanned aerial vehicles considering actuator failures. IEEE Trans. Aerosp. Electron. Syst. 2023, 1–13. [Google Scholar] [CrossRef]
- Hu, J.; Lennox, B.; Farshad Arvin, B. Robust formation control for networked robotic systems using negative imaginary dynamics. Automatica 2022, 140, 110235. [Google Scholar] [CrossRef]
- Hu, J.; Hu, X.; Shen, T. Cooperative shift estimation of target trajectory using clustered sensors. J. Syst. Sci. Complex. 2014, 27, 413–429. [Google Scholar] [CrossRef]
- Chen, B.; Hu, J.; Zhao, Y.; Ghosh, B.K. Finite-time velocity-free rendezvous control of multiple auv systems with intermittent communication. IEEE Trans. Syst. Man Cyber. Sys. 2022, 52, 6618–6629. [Google Scholar] [CrossRef]
- Ma, H.; Yang, C. Exponential synchronization of hyperbolic complex spatio-temporal networks with multi-weights. Mathematics 2022, 10, 2451. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Q.; Zheng, Y.; Zhu, Y. Containment control of hybrid multi-agent systems. Int. J. Robust Nonlinear Control 2022, 32, 1355–1373. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, J.; Zhao, Y.; Ghosh, B.K. Output synchronization of wide-area multi-agent systems via an event-triggered hybrid control approach. Commun. Nonlinear Sci. Numer. Simul. 2023, 619, 263–275. [Google Scholar] [CrossRef]
- Haghshenas, H.; Badamchizadeh, M.A.; Baradarannia, M. Containment control of heterogeneous linear multi-agent systems. Automatica 2015, 54, 210–216. [Google Scholar] [CrossRef]
- Zuo, S.; Song, Y.; Lewis, F.L.; Davoudi, A. Output containment control of linear heterogeneous multi-agent systems using internal model principle. IEEE Trans. Cybern. 2017, 47, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Lui, D.G.; Petrillo, A.; Santini, S. An optimal distributed PID-like control for the output containment and leader-following of heterogeneous high-order multi-agent systems. Inf. Sci. 2020, 541, 166–184. [Google Scholar] [CrossRef]
- Bi, C.; Xu, X.; Liu, L.; Feng, G. Output containment control of heterogeneous linear multiagent systems with unbounded distributed transmission delays. IEEE Trans. Cybern. 2022, 52, 8157–8166. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Duan, G.; Cheng, S.; Cao, S.; Wang, G. Fixed-time time-varying output formation-containment control of heterogeneous general multi-agent systems. ISA Trans. 2023, 137, 210–221. [Google Scholar] [CrossRef]
- Sader, M.; Li, W.; Jiang, H.; Chen, L.; Chen, Z. Semi-global bipartite fault-tolerant containment control for heterogeneous multiagent systems with antagonistic communication networks and input saturation. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–8. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Gao, Z.; Wang, Y.; Sun, J. Fully distributed event/self-triggered bipartite output formation-containment tracking control for heterogeneous multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 7851–7860. [Google Scholar] [CrossRef]
- Bi, C.; Xu, X.; Liu, L.; Feng, G. Formation-containment tracking for heterogeneous linear multiagent systems under unbounded distributed transmission delays. IEEE Trans. Control Netw. Syst. 2023, 10, 822–833. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, M.; He, S.; Luan, X.; Liu, F.; Ding, Z. Solving the zero-sum control problem for tidal turbine system: An online reinforcement learning approach. IEEE Trans. Cybern. 2022, 1–13. [Google Scholar] [CrossRef]
- He, S.; Fang, H.; Zhang, M.; Liu, F.; Ding, Z. Adaptive optimal control for a class of nonlinear systems: The online policy iteration approach. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 549–558. [Google Scholar] [CrossRef]
- Cai, H.; Lewis, F.L.; Hu, G.; Huang, J. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica 2017, 75, 299–305. [Google Scholar] [CrossRef]
- Liang, H.; Zhou, Y.; Ma, H.; Zhou, Q. Adaptive distributed observer approach for cooperative containment control of nonidentical networks. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 299–307. [Google Scholar] [CrossRef]
- Zuo, S.; Song, Y.; Lewis, F.A.; Davoudi, A. Adaptive output containment control of heterogeneous multi-agent systems with unknown leaders. Automatica 2018, 92, 235–239. [Google Scholar] [CrossRef]
- Deepak, G.C.; Ladas, A.; Sambo, Y.A.; Pervaiz, H.; Politis, C.; Lmran, M.A. An overview of post-disaster emergency communication systems in the future networks. IEEE Wirel. Commun. 2019, 26, 132–139. [Google Scholar]
- Bragagnolo, M.C.; Morărescu, I.C.; Daafouz, J.; Riedinger, P. Reset strategy for consensus in networks of clusters. Automatica 2016, 65, 53–63. [Google Scholar] [CrossRef]
- Pham, V.T.; Messai, N.; Manamanni, N. Impulsive observer-based control in clustered networks of linear multi-agent systems. IEEE Trans. Netw. Sci. Eng. 2020, 7, 1840–1851. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Hu, J. Reset output feedback control of cluster linear multi-agent systems. J. Franklin Inst. 2021, 358, 8419–8442. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, J.; Wu, Y.; Zhao, Y. Output synchronization of wide-area heterogeneous multi-agent systems over intermittent clustered networks. Inf. Sci. 2023, 619, 263–275. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, J.; Wu, Y.; Ghosh, B.K. Intermittent output tracking control of heterogeneous multi-agent systems over wide-area clustered communication networks. Nonline Anal. Hybrid Syst. 2023, 50, 101387. [Google Scholar] [CrossRef]
- Wu, Y.; Zhuang, S.; Li, W. Periodically intermittent discrete observation control for synchronization of the general stochastic complex network. Automatica 2019, 110, 108591. [Google Scholar] [CrossRef]
- Chen, H.; Shi, P.; Lim, C.-C. Cluster synchronization for neutral stochastic delay networks via intermittent adaptive control. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3246–3259. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Li, W. Stabilization of highly nonlinear stochastic coupled systems via periodically intermittent control. IEEE Trans. Autom. Control 2021, 66, 4799–4806. [Google Scholar] [CrossRef]
- Cheng, L.; Qiu, J.; Chen, X.; Zhang, A.; Yang, C.; Chen, X. Adaptive aperiodically intermittent control for pinning synchronization of directed dynamical networks. Int. J. Robust Nonlinear Control 2019, 29, 1909–1925. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Wang, J.L. Stabilization of stochastic highly non-linear multi-links systems via aperiodically intermittent control. Automatica 2022, 42, 110405. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, Y.; Cao, J. Finite-time H∞ cluster consensus control for nonlinear multi-agent systems with aperiodically intermittent control. Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106677. [Google Scholar] [CrossRef]
- Liu, Y.; Su, H. Containment control of second-order multi-agent systems via intermittent sampled position data communication. Appl. Math. Comput. 2019, 362, 124522. [Google Scholar] [CrossRef]
- Tan, M.; Zhang, X.; Ye, L.; Lin, P. Robust containment control for nonlinear multi-agent systems with intermittent communication. Opt. Control Appl. Methods 2022, 43, 553–565. [Google Scholar] [CrossRef]
- Wang, Y.W.; Liu, X.K.; Xiao, J.W.; Lin, X. Output formation-containment of coupled heterogeneous linear systems under intermittent communication. J. Frankl. Inst. 2017, 354, 392–414. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, J.; Li, W. Intermittent discrete observation control for synchronization of stochastic neural networks. IEEE Trans. Cybern. 2020, 50, 2414–2424. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Chen, Z. Distributed containment control for second-order multi-agent systems with time delay and intermittent communication. Int. J. Robust Nonlin. Control 2018, 28, 5730–5746. [Google Scholar] [CrossRef]
- Yang, Y.; Modares, H.; Vamvoudakis, K.G.; Yin, Y.; Wunsch, D.C. Dynamic intermittent feedback design for H∞ containment control on a directed graph. IEEE Trans. Cybern. 2020, 50, 3752–3765. [Google Scholar] [CrossRef]
- Xiao, Q.; Lewis, F.L.; Zeng, Z. Containment control for multi-agent systems under two intermittent control schemes. IEEE Trans. Autom. Control 2018, 64, 1236–1243. [Google Scholar] [CrossRef]
- Li, Z.; Wen, G.; Duan, Z.; Ren, W. Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Autom. Control 2015, 60, 1152–1157. [Google Scholar] [CrossRef]
- Qian, Y.-Y.; Liu, L.; Feng, G. Cooperative output regulation of linear multiagent systems: An event-triggered adaptive distributed observer approach. IEEE Trans. Autom. Control 2021, 66, 833–840. [Google Scholar] [CrossRef]
- Liu, B.; Yang, M.; Liu, T.; Hill, D.J. Stabilization to exponential input-to-state stability via aperiodic intermittent control. IEEE Trans. Autom. Control 2021, 66, 2913–2919. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Hu, J.; Ghosh, B.K. Adaptive Output Containment Tracking Control for Heterogeneous Wide-Area Networks with Aperiodic Intermittent Communication and Uncertain Leaders. Sensors 2023, 23, 8631. https://doi.org/10.3390/s23208631
Shi Y, Hu J, Ghosh BK. Adaptive Output Containment Tracking Control for Heterogeneous Wide-Area Networks with Aperiodic Intermittent Communication and Uncertain Leaders. Sensors. 2023; 23(20):8631. https://doi.org/10.3390/s23208631
Chicago/Turabian StyleShi, Yanpeng, Jiangping Hu, and Bijoy Kumar Ghosh. 2023. "Adaptive Output Containment Tracking Control for Heterogeneous Wide-Area Networks with Aperiodic Intermittent Communication and Uncertain Leaders" Sensors 23, no. 20: 8631. https://doi.org/10.3390/s23208631
APA StyleShi, Y., Hu, J., & Ghosh, B. K. (2023). Adaptive Output Containment Tracking Control for Heterogeneous Wide-Area Networks with Aperiodic Intermittent Communication and Uncertain Leaders. Sensors, 23(20), 8631. https://doi.org/10.3390/s23208631