Enhanced Near-Infrared Ultra-Narrow Absorber Based on a Dielectric Nano-Resonant Ring for Refractive Index Sensing
Abstract
:1. Introduction
2. Experiment and Design
3. Results and Discussion
3.1. Electromagnetic Field Analysis
3.2. Geometric Parameter and Fabrication Tolerances
3.3. Sensing Characteristics of INRR and ANRR
3.4. Polarization and Incidence Angle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Xiao, S.; Zhou, L.; Chan, C.; Shong, P. Metamaterials: Theory, Design, and Applications; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Chong, M.-Z.; He, Y.; Zhao, J.; Zhang, Y.-Y.; Zhang, Z.-K.; Zhang, C.-Q.; Du, C.-H.; Zang, X.; Liu, P.-K. Spin-decoupled excitation and wavefront shaping of structured surface waves via on-chip terahertz metasurfaces. Nanoscale 2023, 15, 4515–4522. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Jiang, X.; Zhou, C.; Xiao, S. Black phosphorus-based anisotropic absorption structure in the mid-infrared. Opt. Express 2019, 27, 27618–27627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, D.; Zhou, S.; Chen, G.; Su, J.; Sun, L.; Xiong, Y.; Li, X. Quasi-Freeform Metasurfaces for Wide-Angle Beam Deflecting and Splitting. Nanomaterials 2023, 13, 1156. Available online: https://www.mdpi.com/2079-4991/13/7/1156 (accessed on 24 March 2023). [CrossRef]
- Zhang, H.; Wang, R.; Sikdar, D.; Wu, L.; Sun, J.; Gu, N.; Chen, Y. Plasmonic superlattice membranes based on bimetallic nano-sea urchins as high-performance label-free surface-enhanced Raman spectroscopy platforms. ACS Sens. 2022, 7, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Liang, Z.; Shi, X.; Zhang, X.; Meng, D.; Dai, R.; Zhang, S.; Jia, Y.; Yan, N.; Li, S. Enhanced ultrathin ultraviolet detector based on a diamond metasurface and aluminum reflector. Opt. Express 2023, 31, 15836–15847. [Google Scholar] [CrossRef]
- Sun, L.; Liu, D.; Su, J.; Li, X.; Zhou, S.; Wang, K.; Zhang, Q. Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance. Nanomaterials 2022, 12, 4223. [Google Scholar] [CrossRef] [PubMed]
- Tuan, T.S.; Hoa, N.T.Q. Numerical study of an efficient broadband metamaterial absorber in visible light region. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Peng, J.; He, X.; Shi, C.; Leng, J.; Lin, F.; Liu, F.; Zhang, H.; Shi, W. Investigation of graphene supported terahertz elliptical metamaterials. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 124, 114309. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Guo, L.; Chen, Z.; Li, C.; Zhang, H.; Jiao, J.; An, B. Tunable ultra-broadband terahertz perfect absorber based on vanadium oxide metamaterial. Opt. Express 2021, 29, 41222–41233. [Google Scholar] [CrossRef]
- Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, R.; Liu, Y.; Chen, X.; Li, K.; Pickwell-Macpherson, E. Gold nanoparticle enhanced detection of EGFR with a terahertz metamaterial biosensor. Biomed. Opt. Express 2021, 12, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Cha, S.; Shin, G.; Ahn, Y. Sensing viruses using terahertz nano-gap metamaterials. Biomed. Opt. Express 2017, 8, 3551–3558. [Google Scholar] [CrossRef]
- Aslinezhad, M. High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 2020, 463, 125411. [Google Scholar] [CrossRef]
- Ekmekci, E.; Kose, U.; Cinar, A.; Ertan, O.; Ekmekci, Z. The use of metamaterial type double-sided resonator structures in humidity and concentration sensing applications. Sens. Actuators A Phys. 2019, 297, 111559. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Z.; Li, K.; Uggalla, L.; Huang, J.; Copner, N.; Zhou, Y.; Qiao, D.; Zhu, J. Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing. Opt. Lett. 2017, 42, 4537–4540. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zhao, D.; Ruan, Z.; Li, Q.; Yang, Y.; Qiu, M. Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Opt. Lett. 2014, 39, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Feng, A.S.; Yu, Z.J.; Sun, X.K. Ultranarrow-band metagrating absorbers for sensing and modulation. Opt. Express 2018, 26, 28197–28205. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-D.; Zhai, X.; Wang, L.-L.; Lin, Q.; Xia, S.-X.; Luo, X.; Zhao, C.-J. A high-performance refractive index sensor based on Fano resonance in Si split-ring metasurface. Plasmonics 2018, 13, 15–19. [Google Scholar] [CrossRef]
- Liu, X.; Fu, G.; Zhan, X.; Liu, Z. All-metal resonant metamaterials for one-, two-, three-band perfect light absorbers and sensors. Plasmonics 2019, 14, 967–971. [Google Scholar] [CrossRef]
- Kang, S.; Qian, Z.; Rajaram, V.; Calisgan, S.D.; Alù, A.; Rinaldi, M. Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy. Adv. Opt. Mater. 2019, 7, 1801236. [Google Scholar] [CrossRef]
- Ospanova, A.K.; Stenishchev, I.V.; Basharin, A.A. Anapole mode sustaining silicon metamaterials in visible spectral range. Laser Photonics Rev. 2018, 12, 1800005. [Google Scholar] [CrossRef]
- Grinblat, G.; Li, Y.; Nielsen, M.P.; Oulton, R.F.; Maier, S.A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 2016, 16, 4635–4640. [Google Scholar] [CrossRef]
- Timofeeva, M.; Lang, L.; Timpu, F.; Renaut, C.; Bouravleuv, A.; Shtrom, I.; Cirlin, G.; Grange, R. Anapoles in free-standing III–V nanodisks enhancing second-harmonic generation. Nano Lett. 2018, 18, 3695–3702. [Google Scholar] [CrossRef]
- Li, S.Q.; Guo, P.; Zhang, L.; Zhou, W.; Odom, T.W.; Seideman, T.; Ketterson, J.B.; Chang, R.P. Infrared plasmonics with indium–tin-oxide nanorod arrays. ACS Nano 2011, 5, 9161–9170. [Google Scholar] [CrossRef]
- Min, P.; Song, Z.; Yang, L.; Ralchenko, V.G.; Zhu, J. Multispectral meta-film design: Simultaneous realization of wideband microwave absorption, low infrared emissivity, and visible transparency. Opt. Express 2022, 30, 32317–32332. [Google Scholar] [CrossRef]
- Aspnes, D.E. The accurate determination of optical properties by ellipsometry. In Handbook of Optical Constants of Solids; Elsevier: Amsterdam, The Netherlands, 1997; pp. 89–112. [Google Scholar] [CrossRef]
- Synowicki, R.A. Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 1998, 313, 394–397. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Viarbitskaya, S.; Cuche, A.L.; Teulle, A.; Sharma, J.; Girard, C.; Arbouet, A.; Dujardin, E. Plasmonic hot printing in gold nanoprisms. ACS Photonics 2015, 2, 744–751. [Google Scholar] [CrossRef]
- Wang, K.; Jiao, P.; Cheng, Y.; Xu, H.; Zhu, G.; Zhao, Y.; Jiang, K.; Zhang, X.; Su, Y. ITO films with different preferred orientations prepared by DC magnetron sputtering. Opt. Mater. 2022, 134, 113040. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Qin, F.; Chen, Z.; Chen, X.; Yi, Z.; Yao, W.; Duan, T.; Wu, P.; Yang, H.; Li, G.; Yi, Y. A tunable triple-band near-infrared metamaterial absorber based on Au nano-cuboids array. Nanomaterials 2020, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Z.; Yang, H.; Yi, Z.; Chen, X.; Yao, W.; Duan, T.; Wu, P.; Li, G.; Yi, Y. Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using Au nanocubes. Nanomaterials 2020, 10, 257. [Google Scholar] [CrossRef]
- Zou, H.; Cheng, Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt. Mater. 2019, 88, 674–679. [Google Scholar] [CrossRef]
- Cheng, Y.; Fan, J.; Luo, H.; Chen, F. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access 2019, 8, 7615–7621. [Google Scholar] [CrossRef]
- Cen, C.; Chen, Z.; Xu, D.; Jiang, L.; Chen, X.; Yi, Z.; Wu, P.; Li, G.; Yi, Y. High quality factor, high sensitivity metamaterial graphene—Perfect absorber based on critical coupling theory and impedance matching. Nanomaterials 2020, 10, 95. [Google Scholar] [CrossRef]
- Fan, J.; Cheng, Y. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. J. Phys. D Appl. Phys. 2019, 53, 025109. [Google Scholar] [CrossRef]
- Yan, Z.; Zhu, Q.; Wan, M.; Lu, X.; Pu, X.; Tang, C.; Yu, L. Graphene ultraviolet ultrahigh-Q perfect absorption for nanoscale optical sensing. Opt. Express 2020, 28, 6095–6101. [Google Scholar] [CrossRef] [PubMed]
- Rakhshani, M.R. Narrowband plasmonic absorber using gold nanoparticle arrays for refractive index sensing. IEEE Sens. J. 2022, 22, 4043–4050. [Google Scholar] [CrossRef]
- Li, R.; He, M.; Wang, J.; Zhao, W.; Sun, S.; Mao, Y.; Tian, S.; Fan, C. Ultranarrow perfect absorber with linewidth down to 1 nm based on optical anapole mode. Results Phys. 2022, 37, 105484. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Xu, D.; Yi, Z.; Chen, X.; Chen, J.; Tang, Y.; Wu, P.; Li, G.; Yi, Y. Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results Phys. 2020, 16, 102951. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, D.; Su, J.; Sun, L.; Luo, H.; Chen, G.; Ma, C.; Zhang, Q. Enhanced Near-Infrared Ultra-Narrow Absorber Based on a Dielectric Nano-Resonant Ring for Refractive Index Sensing. Sensors 2023, 23, 8402. https://doi.org/10.3390/s23208402
Li X, Liu D, Su J, Sun L, Luo H, Chen G, Ma C, Zhang Q. Enhanced Near-Infrared Ultra-Narrow Absorber Based on a Dielectric Nano-Resonant Ring for Refractive Index Sensing. Sensors. 2023; 23(20):8402. https://doi.org/10.3390/s23208402
Chicago/Turabian StyleLi, Xingyu, Dingquan Liu, Junli Su, Leihao Sun, Haihan Luo, Gang Chen, Chong Ma, and Qiuyu Zhang. 2023. "Enhanced Near-Infrared Ultra-Narrow Absorber Based on a Dielectric Nano-Resonant Ring for Refractive Index Sensing" Sensors 23, no. 20: 8402. https://doi.org/10.3390/s23208402
APA StyleLi, X., Liu, D., Su, J., Sun, L., Luo, H., Chen, G., Ma, C., & Zhang, Q. (2023). Enhanced Near-Infrared Ultra-Narrow Absorber Based on a Dielectric Nano-Resonant Ring for Refractive Index Sensing. Sensors, 23(20), 8402. https://doi.org/10.3390/s23208402