A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament
Abstract
1. Introduction
2. Theoretical Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dicaire, I.; Jukna, V.; Praz, C.; Milian, C.; Summerer, L.; Couairon, A. Spaceborne laser filamentation for atmospheric remote sensing. Laser Photon. Rev. 2016, 10, 481. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, Y.; Chin, S.L.; Sun, H. Femtosecond laser ionization and fragmentation of molecules for environmental sensing. Laser Photon. Rev. 2015, 9, 275. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, N.; Guo, L.; Zhang, Z.; Qi, P.; Sun, L.; Gong, C.; Lin, L.; Liu, W. Effect of laser repetition rate on the fluorescence characteristic of a long-distance femtosecond laser filament. Opt. Lett. 2022, 47, 5676–5679. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Q.; Zhang, Z.; Fan, Z.; Zhou, D.; Liang, Q.; Yuan, L.; Zhuang, S.; Dorfman, K.; Liu, Y. Coherent control of the multiple wavelength lasing of N2+: Coherence transfer and beyond. Optica 2021, 8, 668–673. [Google Scholar] [CrossRef]
- Liu, W. Intensity clamping during femtosecond laser filamentation. Chin. J. Phys. 2014, 52, 465. [Google Scholar]
- Hosseini, S.A.; Azarm, A.; Daigle, J.F.; Kamali, Y.; Chin, S.L. Filament-induced amplified spontaneous emission in air–hydrocarbons gas mixture. Opt. Commun. 2014, 316, 61. [Google Scholar] [CrossRef]
- Xu, H.L.; Méjean, G.; Liu, W.; Kamali, Y.; Daigle, J.F.; Azarm, A.; Simard, P.T.; Mathieu, P.; Roy, G.; Simard, J.R.; et al. Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy. Appl. Phys. B 2007, 87, 151. [Google Scholar] [CrossRef]
- Daigle, J.F.; Méjean, G.; Liu, W.; Théberge, F.; Xu, H.L.; Kamali, Y.; Bernhardt, J.; Azarm, A.; Sun, Q.; Mathieu, P.; et al. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy. Appl. Phys. B 2007, 87, 749. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, W.; Chin, S.L. Lasing action in air induced by ultrafast laser filamentation. Appl. Phys. B 2003, 76, 337. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, T.; Teranishi, Y.; Sridharan, A.; Lin, S.H.; Zeng, H.; Chin, S.L. Lasing action in water vapor induced by ultrashort laser filamentation. Appl. Phys. Lett. 2013, 102, 224102. [Google Scholar] [CrossRef]
- Dogariu, A.; Michael, J.B.; Scully, M.O.; Miles, R.B. High-gain backward lasing in air. Science 2011, 331, 442. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Zhang, Y.; Liang, C.; Yu, M.; Liu, Y.; Jin, M. Nitrogen fluorescence emission induced by femtosecond vortex beams in air. Phys. Scr. 2023, 98, 055508. [Google Scholar] [CrossRef]
- Li, H.; Lötstedt, E.; Li, H.; Zhou, Y.; Dong, N.; Deng, L.; Lu, P.; Ando, T.; Iwasaki, A.; Fu, Y.; et al. Giant enhancement of air lasing by complete population inversion in N2+. Phys. Rev. Lett. 2020, 125, 053201. [Google Scholar] [CrossRef]
- Zhu, D.; Li, C.; Gao, Z.; Sun, X.; Gao, H. Nitrogen air lasing induced by multiple filaments array. Optoelectron. Lett. 2022, 18, 354–359. [Google Scholar] [CrossRef]
- Kartashov, D.; Alisauskas, S.; Andriukaitis, G.; Pugžlys, A.; Shneider, M.N.; Zheltikov, A.M.; Chin, S.L.; Baltuska, A. Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 2012, 86, 033831. [Google Scholar] [CrossRef]
- Liu, Y.; Brelet, Y.; Point, G.; Houard, A.; Mysyrowicz, A. Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 2013, 21, 22791. [Google Scholar] [CrossRef]
- Ni, J.; Chu, W.; Jing, C.; Zhang, H.; Zeng, B.; Yao, J.; Li, G.; Xie, H.; Zhang, C.; Xu, H.; et al. Identification of the physical mechanism of generation of coherent N2+ emissions in air by femtosecond laser excitation. Opt. Express 2013, 21, 8746–8752. [Google Scholar] [CrossRef]
- Yao, J.; Zeng, B.; Xu, H.; Li, G.; Chu, W.; Ni, J.; Zhang, H.; Chin, S.L.; Cheng, Y.; Xu, Z. High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 2011, 84, 051802. [Google Scholar] [CrossRef]
- Chu, W.; Li, G.; Xie, H.; Ni, J.; Yao, J.; Zeng, B.; Zhang, H.; Jing, C.; Xu, H.; Cheng, Y. A self-induced white light seeding laser in a femtosecond laser filament. Laser Phys. Lett. 2014, 11, 015301. [Google Scholar] [CrossRef][Green Version]
- Gao, J.; Zhang, X.; Wang, Y.; Fang, Y.; Lu, Q.; Li, Z.; Liu, Y.; Wu, C.; Gong, Q.; Liu, Y.; et al. Structured air lasing of N2+. Commun. Phys. 2023, 6, 97. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, P.; Wilkins, S.G.; Athanasakis-Kaklamanakis, M.; Zhang, Y.; Liu, Z.; Hu, B. Theoretical treatment on externally-seeded superradiance from N2+ in femtosecond laser filamentation in low-pressure nitrogen. Front. Phys. 2023, 10, 1090346. [Google Scholar] [CrossRef]
- Chiron, A.; Lamouroux, B.; Lange, R.; Ripoche, J.F.; Franco, M.; Prade, B.; Bonnaud, G.; Riazuelo, G.; Mysyrowicz, A. Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases. Eur. Phys. J. D 1999, 6, 383. [Google Scholar] [CrossRef]
- Doering, J.P.; Yang, J. Comparison of the electron impact cross section for the N2+ first negative (0,0) band (λ3914 Å) measured by optical fluorescence, coincidence electron impact, and photoionization experiments. J. Geophys. Res. 1996, 101, 19723. [Google Scholar] [CrossRef]
- Li, G.; Jing, C.; Zeng, B.; Xie, H.; Yao, J.; Chu, W.; Ni, J.; Zhang, H.; Xu, H.; Cheng, Y.; et al. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization. Phys. Rev. A 2014, 89, 033833. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, P.; Lambert, G.; Houard, A.; Tikhonchuk, V.; Mysyrowicz, A. Recollisioninduced superradiance of ionized nitrogen molecules. Phys. Rev. Lett. 2015, 115, 133203. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Jiang, S.; Chu, W.; Zeng, B.; Wu, C.; Lu, R.; Li, Z.; Xie, H.; Li, G.; Yu, C.; et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields. Phys. Rev. Lett. 2016, 116, 143007. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chu, W.; Liu, Z.; Chen, J.; Xu, B.; Cheng, Y. An anatomy of strong-field ionization-induced air lasing. Appl. Phys. B 2018, 124, 73. [Google Scholar] [CrossRef]
- Tzortzakis, S.; Prade, B.; Franco, M.; Mysyrowicz, A. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 2000, 181, 123–127. [Google Scholar] [CrossRef]
- Papeer, J.; Mitchell, C.; Penano, J.; Ehrlich, Y. Sprangle and A. Zigler Microwave diagnostics of femtosecond laser-generated plasma filaments. Appl. Phys. Lett. 2011, 99, 141503. [Google Scholar] [CrossRef]
- Papeer, J.; Botton, M.; Gordon, D.; Sprangle, P.; Zigler, A.; Henis, Z. Extended lifetime of high density plasma filament generated by a dual femtosecond–nanosecond laser pulse in air. New J. Phys. 2014, 16, 123046. [Google Scholar] [CrossRef]
- Liu, X.L.; Lu, X.; Ma, J.L.; Feng, L.B.; Ge, X.L.; Zheng, Y.; Li, Y.T.; Chen, L.M.; Dong, Q.L.; Wang, W.M.; et al. Long lifetime air plasma channel generated by femtosecond laser pulse sequence. Opt. Express 2012, 20, 5968. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.Q.; Zhang, J.; Li, Y.T.; Lu, X.; Yuan, X.H.; Zheng, Z.Y.; Wang, Z.H.; Ling, W.J.; Wei, Z.Y. Prolongation of the fluorescence lifetime of plasma channels in air induced by femtosecond laser pulses. Appl. Phys. B 2005, 80, 627. [Google Scholar] [CrossRef]
- Scheller, M.; Born, N.; Cheng, W.; Polynkin, P. Channeling the electrical breakdown of air by optically heated plasma filaments. Optica 2014, 1, 125–128. [Google Scholar] [CrossRef]
- Henis, Z.; Milikh, G.; Papadopoulos, K.; Zigler, A. Generation of controlled radiation sources in the atmosphere using a dual femtosecond/nanosecond laser pulse. J. Appl. Phys. 2008, 103, 103111. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, X.; Liang, W.X.; Hao, Z.Q.; Zhou, M.L.; Wang, Z.H.; Liu, X.; Zhang, J. Triggering and guiding HV discharge in air by filamentation of single and dual fs pulses. Opt. Express 2009, 17, 3461–3468. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Zhu, J.; Wang, Z.; Ge, X.; Wang, W.; Liu, J.; Li, R. Low Resistance and Long Lifetime Plasma Channel Generated by Filamentation of Femtosecond Laser Pulses in Air. Plasma Sci. Technol. 2010, 12, 295–299. [Google Scholar]
- Johnson, A.W.; Fowler, R.G. Measured lifetimes of rotational and vibrational levels of electronic states of N2. J. Chem. Phys. 1970, 53, 65–72. [Google Scholar] [CrossRef]
- Chauveau, S.; Perrin, M.Y.; Riviere, P.; Soufiani, A. Contributions of diatomic molecular electronic systems to heated air radiation. J. Quant. Spectrosc. Radiat. Transfer 2002, 72, 503–530. [Google Scholar] [CrossRef]
- Dubietis, A.; Tamosauskas, G.; Fibich, G.; Ilan, B. Multiple filamentation induced by input-beam ellipticity. Opt. Lett. 2004, 29, 1126–1128. [Google Scholar] [CrossRef]
- Liu, W.; Chin, S.L. Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation. Phys. Rev. A 2007, 76, 013826. [Google Scholar] [CrossRef]
- Akozbek, N.; Scalora, M.; Bowden, C.M.; Chin, S.L. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air. Opt. Commun. 2001, 191, 353–362. [Google Scholar] [CrossRef]
- Saleh, B.; Teich, M.; Slusher, R.E. Fundamentals of Photonics; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Sprangle, P.; Pe, J.; Hafizi, B.; Gordon, D.; Scully, M. Remotely induced atmospheric lasing. Appl. Phys. Lett. 2011, 98, 211102. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Li, Y.; Zhang, J.; Li, Y.; Chen, Z.; Teng, H.; Wei, Z.; Sheng, Z. Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air. Phys. Rev. E 2002, 66, 016406. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.A.; Yu, J.; Luo, Q.; Chin, S.L. Multi-parameter characterization of the longitudinal plasma profile of a filament: A comparative study. Appl. Phys. B 2004, 79, 519–523. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Chen, Y.; Xia, T.; Wang, L.; Han, B.; He, F.; Sheng, Z.; Zhang, J. Bessel terahertz pulses from superluminal laser plasma filaments. Ultrafast Sci. 2022, 2022, 9870325. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Gui, Y.; Yi, Y.; Li, N.; Zhang, Z.; Guo, J.; Shang, B.; Guo, L. A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament. Sensors 2023, 23, 8364. https://doi.org/10.3390/s23208364
Zeng T, Gui Y, Yi Y, Li N, Zhang Z, Guo J, Shang B, Guo L. A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament. Sensors. 2023; 23(20):8364. https://doi.org/10.3390/s23208364
Chicago/Turabian StyleZeng, Tao, Ya Gui, Yuliang Yi, Nan Li, Zhi Zhang, Jiewei Guo, Binpeng Shang, and Lanjun Guo. 2023. "A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament" Sensors 23, no. 20: 8364. https://doi.org/10.3390/s23208364
APA StyleZeng, T., Gui, Y., Yi, Y., Li, N., Zhang, Z., Guo, J., Shang, B., & Guo, L. (2023). A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament. Sensors, 23(20), 8364. https://doi.org/10.3390/s23208364