A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament
Abstract
:1. Introduction
2. Theoretical Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dicaire, I.; Jukna, V.; Praz, C.; Milian, C.; Summerer, L.; Couairon, A. Spaceborne laser filamentation for atmospheric remote sensing. Laser Photon. Rev. 2016, 10, 481. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, Y.; Chin, S.L.; Sun, H. Femtosecond laser ionization and fragmentation of molecules for environmental sensing. Laser Photon. Rev. 2015, 9, 275. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, N.; Guo, L.; Zhang, Z.; Qi, P.; Sun, L.; Gong, C.; Lin, L.; Liu, W. Effect of laser repetition rate on the fluorescence characteristic of a long-distance femtosecond laser filament. Opt. Lett. 2022, 47, 5676–5679. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Q.; Zhang, Z.; Fan, Z.; Zhou, D.; Liang, Q.; Yuan, L.; Zhuang, S.; Dorfman, K.; Liu, Y. Coherent control of the multiple wavelength lasing of N2+: Coherence transfer and beyond. Optica 2021, 8, 668–673. [Google Scholar] [CrossRef]
- Liu, W. Intensity clamping during femtosecond laser filamentation. Chin. J. Phys. 2014, 52, 465. [Google Scholar]
- Hosseini, S.A.; Azarm, A.; Daigle, J.F.; Kamali, Y.; Chin, S.L. Filament-induced amplified spontaneous emission in air–hydrocarbons gas mixture. Opt. Commun. 2014, 316, 61. [Google Scholar] [CrossRef]
- Xu, H.L.; Méjean, G.; Liu, W.; Kamali, Y.; Daigle, J.F.; Azarm, A.; Simard, P.T.; Mathieu, P.; Roy, G.; Simard, J.R.; et al. Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy. Appl. Phys. B 2007, 87, 151. [Google Scholar] [CrossRef]
- Daigle, J.F.; Méjean, G.; Liu, W.; Théberge, F.; Xu, H.L.; Kamali, Y.; Bernhardt, J.; Azarm, A.; Sun, Q.; Mathieu, P.; et al. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy. Appl. Phys. B 2007, 87, 749. [Google Scholar] [CrossRef]
- Luo, Q.; Liu, W.; Chin, S.L. Lasing action in air induced by ultrafast laser filamentation. Appl. Phys. B 2003, 76, 337. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, T.; Teranishi, Y.; Sridharan, A.; Lin, S.H.; Zeng, H.; Chin, S.L. Lasing action in water vapor induced by ultrashort laser filamentation. Appl. Phys. Lett. 2013, 102, 224102. [Google Scholar] [CrossRef]
- Dogariu, A.; Michael, J.B.; Scully, M.O.; Miles, R.B. High-gain backward lasing in air. Science 2011, 331, 442. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Zhang, Y.; Liang, C.; Yu, M.; Liu, Y.; Jin, M. Nitrogen fluorescence emission induced by femtosecond vortex beams in air. Phys. Scr. 2023, 98, 055508. [Google Scholar] [CrossRef]
- Li, H.; Lötstedt, E.; Li, H.; Zhou, Y.; Dong, N.; Deng, L.; Lu, P.; Ando, T.; Iwasaki, A.; Fu, Y.; et al. Giant enhancement of air lasing by complete population inversion in N2+. Phys. Rev. Lett. 2020, 125, 053201. [Google Scholar] [CrossRef]
- Zhu, D.; Li, C.; Gao, Z.; Sun, X.; Gao, H. Nitrogen air lasing induced by multiple filaments array. Optoelectron. Lett. 2022, 18, 354–359. [Google Scholar] [CrossRef]
- Kartashov, D.; Alisauskas, S.; Andriukaitis, G.; Pugžlys, A.; Shneider, M.N.; Zheltikov, A.M.; Chin, S.L.; Baltuska, A. Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 2012, 86, 033831. [Google Scholar] [CrossRef]
- Liu, Y.; Brelet, Y.; Point, G.; Houard, A.; Mysyrowicz, A. Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 2013, 21, 22791. [Google Scholar] [CrossRef]
- Ni, J.; Chu, W.; Jing, C.; Zhang, H.; Zeng, B.; Yao, J.; Li, G.; Xie, H.; Zhang, C.; Xu, H.; et al. Identification of the physical mechanism of generation of coherent N2+ emissions in air by femtosecond laser excitation. Opt. Express 2013, 21, 8746–8752. [Google Scholar] [CrossRef]
- Yao, J.; Zeng, B.; Xu, H.; Li, G.; Chu, W.; Ni, J.; Zhang, H.; Chin, S.L.; Cheng, Y.; Xu, Z. High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 2011, 84, 051802. [Google Scholar] [CrossRef]
- Chu, W.; Li, G.; Xie, H.; Ni, J.; Yao, J.; Zeng, B.; Zhang, H.; Jing, C.; Xu, H.; Cheng, Y. A self-induced white light seeding laser in a femtosecond laser filament. Laser Phys. Lett. 2014, 11, 015301. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, X.; Wang, Y.; Fang, Y.; Lu, Q.; Li, Z.; Liu, Y.; Wu, C.; Gong, Q.; Liu, Y.; et al. Structured air lasing of N2+. Commun. Phys. 2023, 6, 97. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, P.; Wilkins, S.G.; Athanasakis-Kaklamanakis, M.; Zhang, Y.; Liu, Z.; Hu, B. Theoretical treatment on externally-seeded superradiance from N2+ in femtosecond laser filamentation in low-pressure nitrogen. Front. Phys. 2023, 10, 1090346. [Google Scholar] [CrossRef]
- Chiron, A.; Lamouroux, B.; Lange, R.; Ripoche, J.F.; Franco, M.; Prade, B.; Bonnaud, G.; Riazuelo, G.; Mysyrowicz, A. Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases. Eur. Phys. J. D 1999, 6, 383. [Google Scholar] [CrossRef]
- Doering, J.P.; Yang, J. Comparison of the electron impact cross section for the N2+ first negative (0,0) band (λ3914 Å) measured by optical fluorescence, coincidence electron impact, and photoionization experiments. J. Geophys. Res. 1996, 101, 19723. [Google Scholar] [CrossRef]
- Li, G.; Jing, C.; Zeng, B.; Xie, H.; Yao, J.; Chu, W.; Ni, J.; Zhang, H.; Xu, H.; Cheng, Y.; et al. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization. Phys. Rev. A 2014, 89, 033833. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, P.; Lambert, G.; Houard, A.; Tikhonchuk, V.; Mysyrowicz, A. Recollisioninduced superradiance of ionized nitrogen molecules. Phys. Rev. Lett. 2015, 115, 133203. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Jiang, S.; Chu, W.; Zeng, B.; Wu, C.; Lu, R.; Li, Z.; Xie, H.; Li, G.; Yu, C.; et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields. Phys. Rev. Lett. 2016, 116, 143007. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chu, W.; Liu, Z.; Chen, J.; Xu, B.; Cheng, Y. An anatomy of strong-field ionization-induced air lasing. Appl. Phys. B 2018, 124, 73. [Google Scholar] [CrossRef]
- Tzortzakis, S.; Prade, B.; Franco, M.; Mysyrowicz, A. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 2000, 181, 123–127. [Google Scholar] [CrossRef]
- Papeer, J.; Mitchell, C.; Penano, J.; Ehrlich, Y. Sprangle and A. Zigler Microwave diagnostics of femtosecond laser-generated plasma filaments. Appl. Phys. Lett. 2011, 99, 141503. [Google Scholar] [CrossRef]
- Papeer, J.; Botton, M.; Gordon, D.; Sprangle, P.; Zigler, A.; Henis, Z. Extended lifetime of high density plasma filament generated by a dual femtosecond–nanosecond laser pulse in air. New J. Phys. 2014, 16, 123046. [Google Scholar] [CrossRef]
- Liu, X.L.; Lu, X.; Ma, J.L.; Feng, L.B.; Ge, X.L.; Zheng, Y.; Li, Y.T.; Chen, L.M.; Dong, Q.L.; Wang, W.M.; et al. Long lifetime air plasma channel generated by femtosecond laser pulse sequence. Opt. Express 2012, 20, 5968. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.Q.; Zhang, J.; Li, Y.T.; Lu, X.; Yuan, X.H.; Zheng, Z.Y.; Wang, Z.H.; Ling, W.J.; Wei, Z.Y. Prolongation of the fluorescence lifetime of plasma channels in air induced by femtosecond laser pulses. Appl. Phys. B 2005, 80, 627. [Google Scholar] [CrossRef]
- Scheller, M.; Born, N.; Cheng, W.; Polynkin, P. Channeling the electrical breakdown of air by optically heated plasma filaments. Optica 2014, 1, 125–128. [Google Scholar] [CrossRef]
- Henis, Z.; Milikh, G.; Papadopoulos, K.; Zigler, A. Generation of controlled radiation sources in the atmosphere using a dual femtosecond/nanosecond laser pulse. J. Appl. Phys. 2008, 103, 103111. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, X.; Liang, W.X.; Hao, Z.Q.; Zhou, M.L.; Wang, Z.H.; Liu, X.; Zhang, J. Triggering and guiding HV discharge in air by filamentation of single and dual fs pulses. Opt. Express 2009, 17, 3461–3468. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Zhu, J.; Wang, Z.; Ge, X.; Wang, W.; Liu, J.; Li, R. Low Resistance and Long Lifetime Plasma Channel Generated by Filamentation of Femtosecond Laser Pulses in Air. Plasma Sci. Technol. 2010, 12, 295–299. [Google Scholar]
- Johnson, A.W.; Fowler, R.G. Measured lifetimes of rotational and vibrational levels of electronic states of N2. J. Chem. Phys. 1970, 53, 65–72. [Google Scholar] [CrossRef]
- Chauveau, S.; Perrin, M.Y.; Riviere, P.; Soufiani, A. Contributions of diatomic molecular electronic systems to heated air radiation. J. Quant. Spectrosc. Radiat. Transfer 2002, 72, 503–530. [Google Scholar] [CrossRef]
- Dubietis, A.; Tamosauskas, G.; Fibich, G.; Ilan, B. Multiple filamentation induced by input-beam ellipticity. Opt. Lett. 2004, 29, 1126–1128. [Google Scholar] [CrossRef]
- Liu, W.; Chin, S.L. Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation. Phys. Rev. A 2007, 76, 013826. [Google Scholar] [CrossRef]
- Akozbek, N.; Scalora, M.; Bowden, C.M.; Chin, S.L. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air. Opt. Commun. 2001, 191, 353–362. [Google Scholar] [CrossRef]
- Saleh, B.; Teich, M.; Slusher, R.E. Fundamentals of Photonics; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Sprangle, P.; Pe, J.; Hafizi, B.; Gordon, D.; Scully, M. Remotely induced atmospheric lasing. Appl. Phys. Lett. 2011, 98, 211102. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Li, Y.; Zhang, J.; Li, Y.; Chen, Z.; Teng, H.; Wei, Z.; Sheng, Z. Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air. Phys. Rev. E 2002, 66, 016406. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.A.; Yu, J.; Luo, Q.; Chin, S.L. Multi-parameter characterization of the longitudinal plasma profile of a filament: A comparative study. Appl. Phys. B 2004, 79, 519–523. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Chen, Y.; Xia, T.; Wang, L.; Han, B.; He, F.; Sheng, Z.; Zhang, J. Bessel terahertz pulses from superluminal laser plasma filaments. Ultrafast Sci. 2022, 2022, 9870325. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Gui, Y.; Yi, Y.; Li, N.; Zhang, Z.; Guo, J.; Shang, B.; Guo, L. A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament. Sensors 2023, 23, 8364. https://doi.org/10.3390/s23208364
Zeng T, Gui Y, Yi Y, Li N, Zhang Z, Guo J, Shang B, Guo L. A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament. Sensors. 2023; 23(20):8364. https://doi.org/10.3390/s23208364
Chicago/Turabian StyleZeng, Tao, Ya Gui, Yuliang Yi, Nan Li, Zhi Zhang, Jiewei Guo, Binpeng Shang, and Lanjun Guo. 2023. "A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament" Sensors 23, no. 20: 8364. https://doi.org/10.3390/s23208364
APA StyleZeng, T., Gui, Y., Yi, Y., Li, N., Zhang, Z., Guo, J., Shang, B., & Guo, L. (2023). A Simulation of Air Lasing Seeded by an External Wave in a Femtosecond Laser Filament. Sensors, 23(20), 8364. https://doi.org/10.3390/s23208364