How the Processing Mode Influences Azure Kinect Body Tracking Results
Abstract
:1. Introduction
2. Materials
2.1. Experimental Setup
2.2. Hardware and Software
- Frame rate: 30 frames per second (FPS)
- Depth mode: narrow field of view, unbinned
- Color format: MJPG
- Color resolution: 2048 × 1536 pixels
- RGB camera firmware version: 1.6.110
- Depth camera firmware version: 1.6.80
3. Methods and Results
3.1. Consideration of Change over Time
3.1.1. Methods
3.1.2. Results
3.2. Comparison of Processing Modes
3.2.1. Methods
3.2.2. Results
Distribution of Joint Positions over Time across the Three Axes
Euclidean Distances of Joint Positions between the Processing Modes
Variations in Bone Length between Body Tracking Runs
3.3. Comparison of Different Computers
3.3.1. Methods
3.3.2. Results
4. Discussion
4.1. Consideration of Change over Time
4.2. Comparison of Processing Modes
4.3. Comparison of Different Computers
4.4. Implications of the Results
- (a)
- The raw data requires a lot of storage space (i); the 30-s video used in this paper was 1.6 GB. At the same time, privacy (ii) is not assured since the subject can be identified from the video data. However, no erroneous data (iii) are stored, and body tracking can be executed again using future improved body tracking methods.
- (b)
- When storing only the raw depth data, the data volume (i) is still high. However, the privacy (ii) of the subject is ensured a little better since it is more difficult to identify a person from depth data. Additionally, body tracking can be repeated at a later time (iii), as in (a).
- (c)
- Storing only the body tracking data of one run requires the least amount of storage space (i) of all options. Privacy (ii) is ensured since no identifiable data is stored. However, differences between various body tracking runs, processing modes, and computers might strongly influence the result (iii).
- (d)
- Body tracking data of multiple runs, on the other hand, require little storage space (i) and ensure privacy (ii). In addition, the measurement error could be reduced by aggregating or filtering the results from multiple body tracking runs (iii) to achieve reasonable accuracy. Although, it should be noted that aggregation and the filtering of body tracking runs are not trivial.
4.5. Limitations and Recommendations for Future Work
5. Conclusions
- Be aware that running body tracking multiple times on the same recording might produce different results;
- Choose your processing mode wisely: CPU and DirectML seem to yield reproducible data (on the same computer), while CUDA and TensorRT do not;
- Report the processing mode in your publication;
- Do not start your analysis from the beginning of the body tracking, but skip a few frames (e.g., 60 frames) to let the joint positions converge to a steady state;
- Generate all body tracking results for your analyses on the same computer, since different computers result in different joint positions; and
- In case it is not possible to save the raw data of the recording (due to data volume constraints and/or privacy concerns), store multiple runs of body tracking data to reduce possible error effects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPU | Central Processing Unit |
CUDA | Compute Unified Device Architecture |
DirectML | Direct Machine Learning |
DK | Developer Kit |
FPS | Frames per Second |
JSON | JavaScript Object Notation |
MJPG | Motion JPEG |
NFOV | Narrow Field of View |
NPTS | Number of Faces of the Ellipsoid |
RGB | Red Green Blue |
RGB-D | Red Green Blue-Depth |
RMSE | Root Mean Squared Error |
SD | Standard Deviation |
SDK | Software Development Kit |
ToF | Time-of-Flight |
WFOV | Wide Field of View |
Appendix A. Mapping between Bone Names and Joints
Bone | Start Joint | End Joint |
---|---|---|
Torso | PELVIS | NECK |
Upper Arm Left | SHOULDER_LEFT | ELBOW_LEFT |
Lower Arm Left | ELBOW_LEFT | WRIST_LEFT |
Upper Arm Right | SHOULDER_RIGHT | ELBOW_RIGHT |
Lower Arm Right | ELBOW_RIGHT | WRIST_RIGHT |
Upper Leg Left | HIP_LEFT | KNEE_LEFT |
Lower Leg Left | KNEE_LEFT | ANKLE_LEFT |
Upper Leg Right | HIP_RIGHT | KNEE_RIGHT |
Lower Leg Right | KNEE_RIGHT | ANKLE_RIGHT |
Appendix B. X-, Y-, and Z-Axes
Appendix C. Ellipsoid Volumes, Euclidean Distances and Bone Lengths
Joint | Proc. Mode | Min | Max | Mean | Median | SD |
---|---|---|---|---|---|---|
ANKLE_LEFT | CPU | 58.57 | 58.57 | 58.57 | 58.57 | 0.00 |
CUDA | 3.73 | 437.42 | 60.74 | 20.60 | 96.28 | |
DirectML | 6.39 | 6.39 | 6.39 | 6.39 | 0.00 | |
TensorRT | 5.04 | 208.39 | 50.11 | 46.42 | 41.67 | |
ANKLE_RIGHT | CPU | 40.06 | 40.06 | 40.06 | 40.06 | 0.00 |
CUDA | 22.26 | 248.33 | 63.50 | 45.65 | 41.66 | |
DirectML | 36.97 | 36.97 | 36.97 | 36.97 | 0.00 | |
TensorRT | 24.45 | 141.19 | 61.46 | 63.88 | 19.33 | |
ELBOW_LEFT | CPU | 61.79 | 61.79 | 61.79 | 61.79 | 0.00 |
CUDA | 36.92 | 233.58 | 79.59 | 74.01 | 27.61 | |
DirectML | 60.07 | 60.07 | 60.07 | 60.07 | 0.00 | |
TensorRT | 60.80 | 114.97 | 84.43 | 95.43 | 16.90 | |
ELBOW_RIGHT | CPU | 19.60 | 19.60 | 19.60 | 19.60 | 0.00 |
CUDA | 7.01 | 36.73 | 13.83 | 9.52 | 8.13 | |
DirectML | 8.35 | 8.35 | 8.35 | 8.35 | 0.00 | |
TensorRT | 8.35 | 31.60 | 20.46 | 24.31 | 10.77 | |
FOOT_LEFT | CPU | 1797.07 | 1797.07 | 1797.07 | 1797.07 | 0.00 |
CUDA | 39.75 | 2546.20 | 513.06 | 112.56 | 777.91 | |
DirectML | 59.46 | 59.46 | 59.46 | 59.46 | 0.00 | |
TensorRT | 53.61 | 2325.67 | 1116.96 | 291.18 | 1028.45 | |
FOOT_RIGHT | CPU | 203.74 | 203.74 | 203.74 | 203.74 | 0.00 |
CUDA | 75.69 | 1438.20 | 418.62 | 232.07 | 346.39 | |
DirectML | 392.61 | 392.61 | 392.61 | 392.61 | 0.00 | |
TensorRT | 117.98 | 1162.23 | 319.07 | 276.23 | 201.39 | |
HIP_LEFT | CPU | 6.69 | 6.69 | 6.69 | 6.69 | 0.00 |
CUDA | 1.77 | 20.44 | 5.25 | 2.61 | 5.04 | |
DirectML | 2.12 | 2.12 | 2.12 | 2.12 | 0.00 | |
TensorRT | 2.28 | 21.82 | 10.39 | 11.34 | 5.18 | |
HIP_RIGHT | CPU | 9.06 | 9.06 | 9.06 | 9.06 | 0.00 |
CUDA | 1.98 | 20.93 | 5.51 | 2.89 | 5.10 | |
DirectML | 2.11 | 2.11 | 2.11 | 2.11 | 0.00 | |
TensorRT | 2.32 | 17.36 | 10.80 | 12.86 | 5.13 | |
KNEE_LEFT | CPU | 42.63 | 42.63 | 42.63 | 42.63 | 0.00 |
CUDA | 2.57 | 149.86 | 29.96 | 12.99 | 38.40 | |
DirectML | 5.35 | 5.35 | 5.35 | 5.35 | 0.00 | |
TensorRT | 5.43 | 112.08 | 35.89 | 16.86 | 26.06 | |
KNEE_RIGHT | CPU | 18.72 | 18.72 | 18.72 | 18.72 | 0.00 |
CUDA | 7.11 | 38.21 | 15.20 | 12.24 | 7.22 | |
DirectML | 9.43 | 9.43 | 9.43 | 9.43 | 0.00 | |
TensorRT | 7.89 | 31.13 | 19.97 | 19.78 | 5.79 | |
NECK | CPU | 14.12 | 14.12 | 14.12 | 14.12 | 0.00 |
CUDA | 7.54 | 36.96 | 17.66 | 15.89 | 5.79 | |
DirectML | 13.43 | 13.43 | 13.43 | 13.43 | 0.00 | |
TensorRT | 10.55 | 30.31 | 19.99 | 17.90 | 4.80 | |
PELVIS | CPU | 5.54 | 5.54 | 5.54 | 5.54 | 0.00 |
CUDA | 1.30 | 12.34 | 3.41 | 1.75 | 3.07 | |
DirectML | 1.40 | 1.40 | 1.40 | 1.40 | 0.00 | |
TensorRT | 1.42 | 11.20 | 6.74 | 8.16 | 3.22 | |
SHOULDER_LEFT | CPU | 27.21 | 27.21 | 27.21 | 27.21 | 0.00 |
CUDA | 9.14 | 84.51 | 29.56 | 25.61 | 12.37 | |
DirectML | 22.59 | 22.59 | 22.59 | 22.59 | 0.00 | |
TensorRT | 10.57 | 61.84 | 36.01 | 40.26 | 9.94 | |
SHOULDER_RIGHT | CPU | 5.39 | 5.39 | 5.39 | 5.39 | 0.00 |
CUDA | 3.34 | 22.68 | 9.39 | 8.61 | 3.20 | |
DirectML | 7.80 | 7.80 | 7.80 | 7.80 | 0.00 | |
TensorRT | 3.87 | 23.19 | 9.14 | 8.29 | 3.36 | |
SPINE_CHEST | CPU | 12.48 | 12.48 | 12.48 | 12.48 | 0.00 |
CUDA | 5.08 | 39.37 | 11.10 | 8.12 | 6.84 | |
DirectML | 6.60 | 6.60 | 6.60 | 6.60 | 0.00 | |
TensorRT | 6.97 | 29.36 | 15.26 | 12.49 | 6.35 | |
SPINE_NAVEL | CPU | 2.18 | 2.18 | 2.18 | 2.18 | 0.00 |
CUDA | 1.61 | 9.24 | 3.71 | 3.21 | 1.54 | |
DirectML | 2.03 | 2.03 | 2.03 | 2.03 | 0.00 | |
TensorRT | 2.45 | 9.83 | 6.20 | 6.06 | 2.35 | |
WRIST_LEFT | CPU | 111.31 | 111.31 | 111.31 | 111.31 | 0.00 |
CUDA | 70.04 | 991.23 | 194.15 | 170.33 | 125.52 | |
DirectML | 186.09 | 186.09 | 186.09 | 186.09 | 0.00 | |
TensorRT | 110.31 | 305.99 | 218.65 | 194.07 | 80.32 | |
WRIST_RIGHT | CPU | 101.37 | 101.37 | 101.37 | 101.37 | 0.00 |
CUDA | 28.93 | 166.39 | 61.85 | 41.62 | 43.38 | |
DirectML | 35.26 | 35.26 | 35.26 | 35.26 | 0.00 | |
TensorRT | 33.69 | 165.84 | 99.81 | 81.74 | 59.64 |
Joint | Proc. Mode | Min | Max | Mean | Median | SD |
---|---|---|---|---|---|---|
ANKLE_LEFT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 21.19 | 4.81 | 2.71 | 5.54 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 19.97 | 6.23 | 3.43 | 6.58 | |
ANKLE_RIGHT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 18.04 | 3.52 | 2.20 | 3.29 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 16.00 | 4.07 | 2.36 | 4.10 | |
ELBOW_LEFT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 21.05 | 3.04 | 2.76 | 2.00 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 11.33 | 2.45 | 2.45 | 2.02 | |
ELBOW_RIGHT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 10.58 | 1.61 | 1.17 | 1.28 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 7.42 | 1.71 | 1.15 | 1.62 | |
FOOT_LEFT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 87.18 | 17.85 | 4.43 | 26.73 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 84.33 | 25.28 | 5.69 | 30.66 | |
FOOT_RIGHT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 76.08 | 8.43 | 3.75 | 11.78 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 71.89 | 8.79 | 3.97 | 11.34 | |
HIP_LEFT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 6.96 | 1.38 | 0.82 | 1.29 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 6.11 | 1.65 | 0.89 | 1.62 | |
HIP_RIGHT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 9.64 | 1.48 | 0.85 | 1.43 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 6.51 | 1.72 | 0.90 | 1.70 | |
KNEE_LEFT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 18.18 | 4.18 | 2.51 | 4.61 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 16.67 | 5.00 | 1.98 | 5.57 | |
KNEE_RIGHT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDAB | 0.0 | 10.59 | 1.95 | 1.45 | 1.60 | |
DirectMLB | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRTB | 0.0 | 9.16 | 2.21 | 1.55 | 2.11 | |
NECK | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 12.18 | 1.83 | 1.33 | 1.47 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 11.91 | 1.89 | 1.31 | 1.84 | |
PELVIS | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 6.18 | 1.18 | 0.67 | 1.15 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 5.34 | 1.42 | 0.71 | 1.42 | |
SHOULDER_LEFT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 15.07 | 2.19 | 1.96 | 1.59 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 10.81 | 1.86 | 1.74 | 1.66 | |
SHOULDER_RIGHT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 7.20 | 1.16 | 1.06 | 0.79 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 8.02 | 0.94 | 0.84 | 0.87 | |
SPINE_CHEST | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 9.52 | 1.79 | 1.25 | 1.46 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 8.87 | 1.95 | 1.32 | 1.85 | |
SPINE_NAVEL | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 12.73 | 0.85 | 0.74 | 0.65 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 10.54 | 0.88 | 0.68 | 0.92 | |
WRIST_LEFT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 23.08 | 3.96 | 3.63 | 2.45 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 14.49 | 3.08 | 2.96 | 2.62 | |
WRIST_RIGHT | CPU | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
CUDA | 0.0 | 15.47 | 2.85 | 2.02 | 2.33 | |
DirectML | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | |
TensorRT | 0.0 | 12.39 | 3.05 | 1.88 | 2.98 |
Bone | Proc. Mode | Min | Max | Mean | Median | SD |
---|---|---|---|---|---|---|
Lower Arm Left | CPU | 228.21 | 231.33 | 230.40 | 230.57 | 0.61 |
CUDA | 227.30 | 232.64 | 228.95 | 228.73 | 0.72 | |
DirectML | 227.95 | 229.58 | 228.70 | 228.69 | 0.24 | |
TensorRT | 227.72 | 231.73 | 229.33 | 228.81 | 0.97 | |
Lower Arm Right | CPU | 231.10 | 234.26 | 233.31 | 233.49 | 0.62 |
CUDA | 230.18 | 235.58 | 231.85 | 231.62 | 0.73 | |
DirectML | 230.84 | 232.49 | 231.59 | 231.58 | 0.24 | |
TensorRT | 230.60 | 234.66 | 232.23 | 231.71 | 0.98 | |
Lower Leg Left | CPU | 376.46 | 381.59 | 380.06 | 380.34 | 1.01 |
CUDA | 374.96 | 383.76 | 377.67 | 377.30 | 1.19 | |
DirectML | 376.02 | 378.71 | 377.25 | 377.24 | 0.39 | |
TensorRT | 375.64 | 382.25 | 378.29 | 377.45 | 1.60 | |
Lower Leg Right | CPU | 380.42 | 385.61 | 384.06 | 384.34 | 1.02 |
CUDA | 378.90 | 387.79 | 381.65 | 381.27 | 1.21 | |
DirectML | 379.98 | 382.70 | 381.22 | 381.20 | 0.39 | |
TensorRT | 379.59 | 386.27 | 382.27 | 381.42 | 1.62 | |
Torso | CPU | 529.29 | 535.96 | 534.00 | 534.39 | 1.29 |
CUDA | 527.25 | 538.71 | 530.95 | 530.49 | 1.54 | |
DirectML | 528.68 | 532.45 | 530.41 | 530.38 | 0.55 | |
TensorRT | 528.18 | 536.91 | 531.73 | 530.69 | 2.06 | |
Upper Arm Left | CPU | 271.91 | 275.62 | 274.51 | 274.71 | 0.73 |
CUDA | 270.82 | 277.18 | 272.79 | 272.52 | 0.86 | |
DirectML | 271.59 | 273.54 | 272.48 | 272.47 | 0.28 | |
TensorRT | 271.32 | 276.09 | 273.23 | 272.62 | 1.16 | |
Upper Arm Right | CPU | 277.05 | 280.83 | 279.70 | 279.91 | 0.74 |
CUDA | 275.95 | 282.42 | 277.95 | 277.67 | 0.88 | |
DirectML | 276.73 | 278.71 | 277.64 | 277.62 | 0.29 | |
TensorRT | 276.45 | 281.32 | 278.40 | 277.78 | 1.18 | |
Upper Leg Left | CPU | 393.91 | 399.28 | 397.68 | 397.98 | 1.05 |
CUDA | 392.34 | 401.55 | 395.18 | 394.79 | 1.25 | |
DirectML | 393.45 | 396.27 | 394.75 | 394.72 | 0.41 | |
TensorRT | 393.06 | 399.98 | 395.83 | 394.95 | 1.68 | |
Upper Leg Right | CPU | 393.49 | 398.85 | 397.25 | 397.55 | 1.05 |
CUDA | 391.92 | 401.12 | 394.76 | 394.37 | 1.25 | |
DirectML | 393.03 | 395.85 | 394.32 | 394.30 | 0.41 | |
TensorRT | 392.63 | 399.54 | 395.41 | 394.52 | 1.68 |
References
- Guess, T.M.; Bliss, R.; Hall, J.B.; Kiselica, A.M. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture. Gait Posture 2022, 96, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, C.; Amprimo, G.; Masi, G.; Vismara, L.; Cremascoli, R.; Sinagra, S.; Pettiti, G.; Mauro, A.; Priano, L. Evaluation of Arm Swing Features and Asymmetry during Gait in Parkinson’s Disease Using the Azure Kinect Sensor. Sensors 2022, 22, 6282. [Google Scholar] [CrossRef] [PubMed]
- Alaoui, H.; Moutacalli, M.T.; Adda, M. AI-Enabled High-Level Layer for Posture Recognition Using The Azure Kinect in Unity3D. In Proceedings of the 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS), Genova, Italy, 9–11 December 2020; pp. 155–161. [Google Scholar] [CrossRef]
- Sekiguchi, S.; Li, L.; Ko, N.Y.; Choi, W. Posture Recognition System using Depth Sensor. In Proceedings of the 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 12–15 October 2021; pp. 1463–1466. [Google Scholar] [CrossRef]
- Microsoft Inc. Azure Kinect DK Hardware Specifications. Available online: https://docs.microsoft.com/en-us/azure/Kinect-dk/hardware-specification (accessed on 25 July 2022).
- Kurillo, G.; Hemingway, E.; Cheng, M.L.; Cheng, L. Evaluating the Accuracy of the Azure Kinect and Kinect v2. Sensors 2022, 22, 2469. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Inc. Azure Kinect DK Depth Camera. Available online: https://docs.microsoft.com/en-us/azure/kinect-dk/depth-camera (accessed on 31 March 2022).
- Tölgyessy, M.; Dekan, M.; Chovanec, L.; Hubinský, P. Evaluation of the Azure Kinect and Its Comparison to Kinect V1 and Kinect V2. Sensors 2021, 21, 413. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Inc. About Azure Kinect DK|Microsoft Docs. Available online: https://docs.microsoft.com/en-us/azure/kinect-dk/about-azure-kinect-dk (accessed on 29 August 2022).
- Albert, J.A.; Owolabi, V.; Gebel, A.; Brahms, C.M.; Granacher, U.; Arnrich, B. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study. Sensors 2020, 20, 5104. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sheng, B.; Hart, R.; Zhang, Y. The validity of a dual Azure Kinect-based motion capture system for gait analysis: A preliminary study. In Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Auckland, New Zealand, 7–10 December 2020; pp. 1201–1206. [Google Scholar]
- Tölgyessy, M.; Dekan, M.; Chovanec, L. Skeleton Tracking Accuracy and Precision Evaluation of Kinect V1, Kinect V2, and the Azure Kinect. Appl. Sci. 2021, 11, 5756. [Google Scholar] [CrossRef]
- Romeo, L.; Marani, R.; Malosio, M.; Perri, A.G.; D’Orazio, T. Performance Analysis of Body Tracking with the Microsoft Azure Kinect. In Proceedings of the 2021 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25 June 2021; pp. 572–577. [Google Scholar] [CrossRef]
- Yeung, L.F.; Yang, Z.; Cheng, K.C.C.; Du, D.; Tong, R.K.Y. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2. Gait Posture 2021, 87, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Liu, D.; Ma, Y. Placement recommendations for single kinect-based motion capture system in unilateral dynamic motion analysis. Healthcare 2021, 9, 1076. [Google Scholar] [CrossRef] [PubMed]
- Microsoft Inc. Azure Kinect DK cOordinate Systems. Available online: https://learn.microsoft.com/en-us/azure/kinect-dk/coordinate-systems (accessed on 30 September 2022).
- Microsoft Inc. GitHub—Microsoft/Azure-Kinect-Samples: Samples for Azure Kinect. 2022. Available online: https://github.com/microsoft/Azure-Kinect-Samples (accessed on 30 June 2022).
- Microsoft Inc. Azure Kinect Body Tracking Joints. Available online: https://docs.microsoft.com/en-us/azure/kinect-dk/body-joints (accessed on 29 August 2022).
- Vallabha, G. PLOT_GAUSSIAN_ELLIPSOID–File Exchange–MATLAB Central. Available online: https://de.mathworks.com/matlabcentral/fileexchange/16543-plot_gaussian_ellipsoid (accessed on 31 March 2022).
- Wang, B.; Shi, W.; Miao, Z. Confidence analysis of standard deviational ellipse and its extension into higher dimensional Euclidean space. PLoS ONE 2015, 10, e0118537. [Google Scholar] [CrossRef] [PubMed]
- Colombel, J.; Daney, D.; Bonnet, V.; Charpillet, F. Markerless 3D Human Pose Tracking in the Wild with Fusion of Multiple Depth Cameras: Comparative Experimental Study with Kinect 2 and 3. In Smart Innovation, Systems and Technologies; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2021; Volume 204, pp. 119–134. [Google Scholar] [CrossRef]
Included Joints | Excluded Joints |
---|---|
PELVIS | CLAVICLE_LEFT |
SPINE_NAVEL | HAND_LEFT |
SPINE_CHEST | HANDTIP_LEFT |
NECK | THUMB_LEFT |
SHOULDER_LEFT | CLAVICLE_RIGHT |
ELBOW_LEFT | HAND_RIGHT |
WRIST_LEFT | HANDTIP_RIGHT |
SHOULDER_RIGHT | THUMB_RIGHT |
ELBOW_RIGHT | HEAD |
WRIST_RIGHT | NOSE |
HIP_LEFT | EYE_LEFT |
KNEE_LEFT | EAR_LEFT |
ANKLE_LEFT | EYE_RIGHT |
FOOT_LEFT | EAR_RIGHT |
HIP_RIGHT | |
KNEE_RIGHT | |
ANKLE_RIGHT | |
FOOT_RIGHT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Büker, L.; Quinten, V.; Hackbarth, M.; Hellmers, S.; Diekmann, R.; Hein, A. How the Processing Mode Influences Azure Kinect Body Tracking Results. Sensors 2023, 23, 878. https://doi.org/10.3390/s23020878
Büker L, Quinten V, Hackbarth M, Hellmers S, Diekmann R, Hein A. How the Processing Mode Influences Azure Kinect Body Tracking Results. Sensors. 2023; 23(2):878. https://doi.org/10.3390/s23020878
Chicago/Turabian StyleBüker, Linda, Vincent Quinten, Michel Hackbarth, Sandra Hellmers, Rebecca Diekmann, and Andreas Hein. 2023. "How the Processing Mode Influences Azure Kinect Body Tracking Results" Sensors 23, no. 2: 878. https://doi.org/10.3390/s23020878
APA StyleBüker, L., Quinten, V., Hackbarth, M., Hellmers, S., Diekmann, R., & Hein, A. (2023). How the Processing Mode Influences Azure Kinect Body Tracking Results. Sensors, 23(2), 878. https://doi.org/10.3390/s23020878