Air Pollution and Radiation Monitoring in Collective Protection Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. ALERT: General Description
2.2. Module Description
2.2.1. IMS Module: CWAs Detection
2.2.2. Gamma Radiation Probes
3. Results
3.1. The Detection of CWAs
3.2. Detection of Gamma Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulczycki, M.; Żuber, M. Dylematy współczesnego bezpieczeństwa. In Katastrofy Naturalne i Cywilizacyjne; Żuber, M., Ed.; Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. Tadeusza Kościuszki: Wrocław, Poland, 2011; p. 9. [Google Scholar]
- Eubanks, L.M.; Dickerson, T.J.; Janda, K.D. Technological advancements for the detection of and protection against biological and chemical warfare agents. Chem. Soc. Rev. 2007, 36, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Singht, V.V. Recent advances in electrochemical sensors for detecting weapons of mass destruction. A review. Electroanalysis 2016, 28, 920–935. [Google Scholar] [CrossRef]
- Sekhar, P.K.; Brosha, E.L.; Mukundan, R.; Garzon, F.H. Chemical sensors for environmental monitoring and homeland security. Electrochem. Soc. Interface 2010, 19, 35. [Google Scholar] [CrossRef]
- Harmata, W.; Szczesniak, Z.; Sobiech, M. Zbiorowe środki ochrony przed skażeniami. Biul. Wojsk. Akad. Tech. 2017, 66, 153–167. [Google Scholar]
- Wilcox, M.; Kurz, R.; Brun, K. Technology review of modern gas turbine inlet filtration systems. Int. J. Rotating Mach. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D.A. Review of air filtration technologies for sustainable and healthy building ventilation. Sustain. Cities Soc. 2017, 32, 375–396. [Google Scholar] [CrossRef]
- Chiaramonte de Castro, B.J.; Sartim, R.; Guerra, V.G.; Lopes Aguiar, M. Hybrid air filters: A review of the main equipment configurations and results. Process Saf. Environ. Prot. 2020, 144, 193–207. [Google Scholar] [CrossRef]
- Sparks, T.; Chase, G. Air and Gas Filtration. In Filters and Filtration Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 117–198. [Google Scholar] [CrossRef]
- Wang, Q.; Khan, F.; Wei, L.; Shen, H.; Zhang, C.; Jiang, Q.; Qiu, Y. Filtration properties of carbon woven fabric filters supplied with high voltage for removal of PM 1.0 particles. Sep. Purif. Technol. 2017, 177, 40–48. [Google Scholar] [CrossRef]
- Jasek, K.; Pasternak, M.; Grabka, M.; Neffe, S.; Zasada, D. Deposition of Polymer Sensor Films on SAW Surface by Electrospraying Technology. Arch. Acoust. 2017, 42, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Harmata, W. Ion Mobility Spectrometry as a Part of a System for Rapid Detection of Toxic Chemicals. Saf. Fire Technol. 2019, 54, 174–192. [Google Scholar] [CrossRef]
- Mäkinen, M.; Anttalainen, O.; Sillanpää, M. Ion Mobility Spectrometry and Its Applications in Detection of Chemical Warfare Agents. Anal. Chem. 2010, 82, 9594–9600. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Atkinson, D.; Eiceman, G.; Ewing, G. A critical review of ion mobility spectrometry for the detection of explo- sives and explosive related compounds. Talanta 2001, 54, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Maziejuk, M.; Harmata, W. Spektrometr ruchliwości jonów, jako element do wykrywania wysokotoksycznych substancji chemicznych. Przem. Chem. 2006, 85, 1495–1499. [Google Scholar]
- Zapadinsky, E.; Passananti, M.; Myllys, N.; Kurtén, T.; Vehkamä, H. Modeling on fragmentation of clusters inside a mass spectrometer. J. Phys. Chem. A 2018, 123, 611–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanu, A.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H., Jr. Ion mobility–mass spectrometry. J. Mass Spectrom. 2008, 43, 1–22. [Google Scholar] [CrossRef]
- Marr, A.; Groves, D. Ion mobility spectrometry of peroxide explosives TATP and HMTD. Int. J. Ion Mobil. Spectrom. 2003, 6, 59–62. [Google Scholar]
- Baumbach, J. Process analysis using ion mobility spectrometry. Anal. Bioanal. Chem. 2006, 384, 1059–1070. [Google Scholar] [CrossRef]
- Vasilyev, V. Ion mobility spectrometer for rapid simultaneous detection of positive and negative ions. In Proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Moldova, 23–26 September 2015; Springer: Singapore, 2016; pp. 515–519. [Google Scholar]
- Armenta, S.; Alcala, M.; Blanco, M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114–123. [Google Scholar] [CrossRef]
- Stach, J.; Baumbach, J. Ion mobility spectrometry—Basic elements and applications. Int. J. Ion Mobil. Spectrom. 2002, 5, 1–21. [Google Scholar]
- Borsdorf, H.; Eiceman, G. Ion mobility spectrometry: Principles and applications. Appl. Spectrosc. Rev. 2006, 41, 323–375. [Google Scholar] [CrossRef]
- Oxley, J.; Smith, J.; Kirschenbaum, L.; Marimganti, S.; Vadlamannati, S. Detection of explosives in hair using ion mobility spectrometry. J. Forensic Sci. 2008, 53, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Golovin, A.; Makarova, N.; Poturuy, A.; Beliakov, V. Prospects for the use of security air flow to prevent ion-molecule reactions in the ionization and drift zone in classical IMS. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; p. 012016. [Google Scholar]
- Puton, J.; Namiesnik, J. Ion mobility spectrometry: Current status and application for chemical warfare agents detection. TrAC Trends Anal. Chem. 2016, 85, 10–20. [Google Scholar] [CrossRef]
- Kaur-Atwal, G.; O’Connor, G.; Aksenov, A.; Bocos-Bintintan, V.; Paul, T.C.; Creaser, C. Chemical standards for ion mobility spectrometry: A review. Int. J. Ion Mobil. Spectrom. 2009, 12, 1–14. [Google Scholar] [CrossRef]
- Jakubowska, M.; Maziejuk, M.; Ceremuga, M.; Siczek, J.; Gallewicz, W. Ceramic DMS—Type detector. Int. J. Ion Mobil. Spectrom. 2012, 15, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Rasanen, R.M.; Nousiainen, M.; Perakorpi, K.; Sillanpaa, M.; Polari, L.; Anttalainen, O.; Utriainen, M. Determination of gas phase triacetone triperoxide with aspiration ion mobility spectrometry and gas chromatography–mass spectrometry. Anal. Chim. Acta 2008, 623, 59–65. [Google Scholar] [CrossRef]
- Eiceman, G. Ion-mobility spectrometry as a fast monitor of chemical composition. TrAC Trends Anal. Chem. 2002, 21, 259–275. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Karpas, Z. Ion Mobility Spectrometry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Hauck, B.C.; Siems, W.F.; Harde, C.S.; McHugh, V.M.; Hill, H.H., Jr. Determination of E/N influence on K 0 values within the low field region of ion mobility spectrometry. J. Phys. Chem. A 2017, 121, 2274–2281. [Google Scholar] [CrossRef]
- Ziemba, R. First aid, antidotes, treatment and the description of physico-chemical properties of toxic industrial substances on the example of ammonia, chlorine and hydrogen chloridey. Mil. Pharm. Med. 2011, 4, 47–56. [Google Scholar]
- Small, L. Toxic Industrial Chemicals: A Future Weapons of Mass Destruction Threat. Master’s Thesis, B.A., Boston University, Boston, MA, USA, 2002. [Google Scholar]
CWAs | Detection Threshold/ Concentration Level [ppm] | CWA Type |
---|---|---|
organophosphorus compounds such as sarin, soman, Vx, and tabun | 50 | G |
blistering agents such as sulfur mustard and lewisite | 500 | H |
TICs | Detection Threshold/ Concentration Level [ppm] |
---|---|
Cl2 | 1500 |
NH3 | 17,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołacz, A.M.; Wiśnik-Sawka, M.; Maziejuk, M.; Natora, M.; Harmata, W.; Rytel, P.; Gajda, D. Air Pollution and Radiation Monitoring in Collective Protection Facilities. Sensors 2023, 23, 706. https://doi.org/10.3390/s23020706
Kołacz AM, Wiśnik-Sawka M, Maziejuk M, Natora M, Harmata W, Rytel P, Gajda D. Air Pollution and Radiation Monitoring in Collective Protection Facilities. Sensors. 2023; 23(2):706. https://doi.org/10.3390/s23020706
Chicago/Turabian StyleKołacz, Angelika Monika, Monika Wiśnik-Sawka, Mirosław Maziejuk, Marek Natora, Władyslaw Harmata, Paweł Rytel, and Dorota Gajda. 2023. "Air Pollution and Radiation Monitoring in Collective Protection Facilities" Sensors 23, no. 2: 706. https://doi.org/10.3390/s23020706
APA StyleKołacz, A. M., Wiśnik-Sawka, M., Maziejuk, M., Natora, M., Harmata, W., Rytel, P., & Gajda, D. (2023). Air Pollution and Radiation Monitoring in Collective Protection Facilities. Sensors, 23(2), 706. https://doi.org/10.3390/s23020706