A Novel Adaptive Time-Frequency Filtering Approach to Enhance the Ultrasonic Inspection of Stainless Steel Structures
Abstract
1. Introduction
2. Modeling of Ultrasonic NDT Signal
3. The Proposed Methodology
3.1. Calculation of Spectral Similarity Index
3.2. SSI-Ssi-Based Adaptive Time-Frequency Filtering
Algorithm 1. Procedure of the proposed method. |
Input: noisy signal |
Output: de-noised signal |
Step 1: Data segmentation. |
Successive segmentation of the signal, such that: |
(1) Segment length is slightly larger than the length of transmitted pulse; |
(2) The overlapped length of adjacent segments is . |
Step 2: Filtering of each data segment. |
For the ith segment whose time center is : |
(1) Calculate its frequency spectrum by FFT; |
(2) Obtain the reference spectrum: ; |
(3) Calculate its SSI value : ; |
(4) Let , calculate the Tukey window:
|
(5) Calculate the filtered spectrum by: ; |
(6) Calculate the weighting coefficient : . |
Step 3: Signal reconstruction. |
Reconstruct the de-noised signal : . |
4. Results
4.1. Simulated Signals
4.2. Experimental Signals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, P.; Yang, L.; Wang, J.; Lin, M.; Fan, J. Bond stress-slip relationship in concrete-filled square stainless steel tubes. Constr. Build. Mater. 2022, 326, 127001. [Google Scholar] [CrossRef]
- Hasan, M.A.; Akiyama, M.; Kashiwagi, K.; Kojima, K.; Peng, L. Flexural behaviour of reinforced concrete beams repaired using a hybrid scheme with stainless steel rebars and CFRP sheets. Constr. Build. Mater. 2020, 265, 120296. [Google Scholar] [CrossRef]
- Remillieux, M.C.; Kaoumi, D.; Ohara, Y.; Geesey, M.A.S.; Xi, L.; Schoell, R.; Bryan, C.R.; Enos, D.G.; Summa, D.A.; Ulrich, T.; et al. Detecting and imaging stress corrosion cracking in stainless steel, with application to inspecting storage canisters for spent nuclear fuel. NDT E Int. 2020, 109, 102180. [Google Scholar] [CrossRef]
- Joseph, M.J.; Jabbar, M.A. Effect of aging process on the microstructure, corrosion resistance and mechanical properties of stainless steel AISI 204. Case Stud. Constr. Mater. 2019, 11, e00253. [Google Scholar] [CrossRef]
- Kain, R.M. Marine atmospheric stress corrosion cracking of austenitic stainless steels. Mater. Perform. 1990, 29, 60–62. [Google Scholar]
- Hwang, Y.-I.; Seo, M.-K.; Oh, H.G.; Choi, N.; Kim, G.; Kim, K.-B. Detection and Classification of Artificial Defects on Stainless Steel Plate for a Liquefied Hydrogen Storage Vessel Using Short-Time Fourier Transform of Ultrasonic Guided Waves and Linear Discriminant Analysis. Appl. Sci. 2022, 12, 6502. [Google Scholar] [CrossRef]
- Malmström, M.; Jansson, A.; Hutchinson, B. Application of Laser-Ultrasonics for Evaluating Textures and Anisotropy. Appl. Sci. 2022, 12, 10547. [Google Scholar] [CrossRef]
- Coro, A.; Macareno, L.M.; Aguirrebeitia, J.; López de Lacalle, L.N. A Methodology to Evaluate the Reliability Impact of the Replacement of Welded Components by Additive Manufacturing Spare Parts. Metals 2019, 9, 932. [Google Scholar] [CrossRef]
- Pereira, J.C.; Zubiri, F.; Garmendia, M.J.; Tena, M.; Gonzalez, H.; de Lacalle, L.N.L. Study of laser metal deposition additive manufacturing, CNC milling, and NDT ultrasonic inspection of IN718 alloy preforms. Int. J. Adv. Manuf. Technol. 2022, 120, 2385–2406. [Google Scholar] [CrossRef]
- Bettayeb, F.; Haciane, S.; Aoudia, S. Improving the time resolution and signal noise ratio of ultrasonic testing of welds by the wavelet packet. NDT E Int. 2005, 5, 478–484. [Google Scholar] [CrossRef]
- Manjula, K.; Vijayarekha, K.; Venkatramen, B. Quality Enhancement of Ultrasonic TOFD Signals from Carbon Steel Weld Pad with Notches. Ultrasonics 2018, 84, 264–271. [Google Scholar] [CrossRef]
- Praveen, A.; Vijayarekha, K.; Abraham, S.T.; Venkatraman, B. Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds. Ultrasonics 2013, 53, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Matz, V.; Smid, R.; Starman, S.; Kreidl, M. Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing. Ultrasonics 2009, 49, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Miralles, R.; Bosch, I.; Vergara, L. New analysis and extensions of split-spectrum processing algorithms. NDT E Int. 2012, 45, 141–147. [Google Scholar] [CrossRef]
- Bosch, I.; Vergara, L. Normalized split-spectrum: A detection approach. Ultrasonics 2008, 48, 56–65. [Google Scholar] [CrossRef]
- Bouden, T.; Djerfi, F.; Nibouche, M. Adaptive split spectrum processing for ultrasonic signal in the pulse echo test. Russ. J. Nondestr. Test. 2015, 51, 245–257. [Google Scholar] [CrossRef]
- Boßmann, F.; Plonka, G.; Peter, T.; Nemitz, O.; Schmitte, T. Sparse Deconvolution Methods for Ultrasonic NDT. J. Nondestruct. Eval. 2012, 31, 225–244. [Google Scholar] [CrossRef]
- Abdessalem, B.; Farid, C. Resolution Improvement of Ultrasonic Signals Using Sparse Deconvolution and Variational Mode Decomposition Algorithms. Russ. J. Nondestr. Test. 2020, 56, 479–489. [Google Scholar] [CrossRef]
- Sun, X.; Lin, L.; Jin, S.J. Improving Time Resolution of Ultrasonic Signals with Frequency-Domain Sparse Blind Deconvolution (FSBD) Method. J. Nondestruct. Eval. 2022, 41, 37. [Google Scholar] [CrossRef]
- Zhang, G.M.; Zhang, C.Z.; Harvey, D.M. Sparse signal representation and its applications in ultrasonic NDE. Ultrasonics 2012, 52, 351–363. [Google Scholar] [CrossRef]
- Wu, B.; Huang, Y.; Krishnaswamy, S. A Bayesian approach for sparse flaw detection from noisy signals for ultrasonic NDT. NDT E Int. 2017, 85, 76–85. [Google Scholar] [CrossRef]
- Mor, E.; Aladjem, M.; Azoulay, A. A Sparse Approximation Method for Ultrasonic Monitoring the Degradation of Adhesive Joints. NDT E Int. 2018, 98, 17–26. [Google Scholar] [CrossRef]
- Papadakis, E.P. Ultrasonic Attenuation Caused by cattering in Polycrystalline Metals. J. Acoust. Soe. Am. 1965, 37, 711–717. [Google Scholar] [CrossRef]
- Saniie, J.; Jin, X.M. Spectral analysis for ultrasonic nondestructive evaluation applications using autoregressive, Prony, and multiple signal classification methods. J. Acoust. Soc. Am. 1996, 100, 3165–3171. [Google Scholar] [CrossRef]
- Goebbels, K.; Hirsekorn, S.; Willems, H. The use of ultrasound in the determination of microstructure: A review. In Proceedings of the IEEE 1984 Ultrasonics Symposium, Dallas, TX, USA, 14–16 November 1984; pp. 841–846. [Google Scholar]
- Saniie, J.; Wang, T.; Bilgutay, N.M. Analysis of homomorphic processing for ultrasonic grain signal characterizations. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 1989, 36, 365–375. [Google Scholar] [CrossRef]
- Wu, B.; Huang, Y. Flaw Detection in Highly Scattering Materials Using a Simple Ultrasonic Sensor Employing Adaptive Template Matching. Sensors 2022, 22, 268. [Google Scholar] [CrossRef]
- Liu, R.M.; Lu, Y.H.; Gong, C.L.; Liu, Y. Infrared point target detection with improved template matching. Infrared. Phys. Techn. 2012, 55, 380–387. [Google Scholar] [CrossRef]
- Bloomfield, P. Fourier Analysis of Time Series: An Introduction; Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- Gustafsson, M.G.; Stepinski, T. Studies of split spectrum processing, optimal detection, and maximum likelihood amplitude estimation using a simple clutter model. Ultrasonics 1997, 35, 31–52. [Google Scholar] [CrossRef]
- Izquierdo, M.A.G.; Hernández, M.G.; Graullera, O.; Ullate, L. Time–frequency Wiener filtering for structural noise reduction. Ultrasonics 2002, 40, 259–261. [Google Scholar] [CrossRef]
Upper Flaw | Lower Flaw | |
---|---|---|
Detected depth (mm) | 32.3 | 52.6 |
Actual depth (mm) | 31.0 | 51.0 |
Absolute error (mm) | 1.3 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Yang, H.; Huang, Y.; Zhou, W.; Liu, X. A Novel Adaptive Time-Frequency Filtering Approach to Enhance the Ultrasonic Inspection of Stainless Steel Structures. Sensors 2023, 23, 1030. https://doi.org/10.3390/s23021030
Wu B, Yang H, Huang Y, Zhou W, Liu X. A Novel Adaptive Time-Frequency Filtering Approach to Enhance the Ultrasonic Inspection of Stainless Steel Structures. Sensors. 2023; 23(2):1030. https://doi.org/10.3390/s23021030
Chicago/Turabian StyleWu, Biao, Haitao Yang, Yong Huang, Wensong Zhou, and Xiaohui Liu. 2023. "A Novel Adaptive Time-Frequency Filtering Approach to Enhance the Ultrasonic Inspection of Stainless Steel Structures" Sensors 23, no. 2: 1030. https://doi.org/10.3390/s23021030
APA StyleWu, B., Yang, H., Huang, Y., Zhou, W., & Liu, X. (2023). A Novel Adaptive Time-Frequency Filtering Approach to Enhance the Ultrasonic Inspection of Stainless Steel Structures. Sensors, 23(2), 1030. https://doi.org/10.3390/s23021030