Remote Sensing Provides a Rapid Epidemiological Context for the Control of African Swine Fever in Germany
Abstract
:2. Materials and Methods
2.1. Crop Classification
2.2. Preparation and Provisioning of Remote Sensing Data to Competent Authorities
2.3. Evaluating the Relevance of Remote Sensing Data for ASF Control
3. Results
3.1. Accuracy of Crop Classification
3.2. Evaluation of Relevance of Remote Sensing Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halasa, T.; Bøtner, A.; Mortensen, S.; Christensen, H.; Wulff, S.B.; Boklund, A. Modeling the Effects of Duration and Size of the Control Zones on the Consequences of a Hypothetical African Swine Fever Epidemic in Denmark. Front. Vet. Sci. 2018, 5, 49. [Google Scholar] [CrossRef] [PubMed]
- Blome, S.; Gabriel, C.; Dietze, K.; Breithaupt, A.; Beer, M. High virulence of African swine fever virus caucasus isolate in European wild boars of all ages. Emerg. Infect. Dis. 2012, 18, 708. [Google Scholar] [CrossRef] [PubMed]
- Nurmoja, I.; Schulz, K.; Staubach, C.; Sauter-Louis, C.; Depner, K.; Conraths, F.J.; Viltrop, A. Development of African swine fever epidemic among wild boar in Estonia—Two different areas in the epidemiological focus. Sci. Rep. 2017, 7, 12562. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.; Oļševskis, E.; Staubach, C.; Lamberga, K.; Seržants, M.; Cvetkova, S.; Conraths, F.J.; Sauter-Louis, C. Epidemiological evaluation of Latvian control measures for African swine fever in wild boar on the basis of surveillance data. Sci. Rep. 2019, 9, 4189. [Google Scholar] [CrossRef]
- Sauter-Louis, C.; Forth, J.H.; Probst, C.; Staubach, C.; Hlinak, A.; Rudovsky, A.; Holland, D.; Schlieben, P.; Göldner, M.; Schatz, J.; et al. Joining the club: First detection of African swine fever in wild boar in Germany. Transbound. Emerg. Dis. 2021, 68, 1744–1752. [Google Scholar] [CrossRef]
- European Commission. Working Document: Principles and Criteria for Geographically Defining ASF Regionalisation. SANTE/7112/2015/Rev. 3, Brussels, 2019. Available online: https://food.ec.europa.eu/system/files/2019-02/ad_control-measures_asf_wrk-doc-sante-2015-7112.pdf (accessed on 1 July 2023).
- Dellicour, S.; Desmecht, D.; Paternostre, J.; Malengreaux, C.; Licoppe, A.; Gilbert, M.; Linden, A. Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. J. Appl. Ecol. 2020, 57, 1619–1629. [Google Scholar] [CrossRef]
- Sauter-Louis, C.; Schulz, K.; Richter, M.; Staubach, C.; Mettenleiter, T.C.; Conraths, F.J. African swine fever: Why the situation in Germany is not comparable to that in the Czech Republic or Belgium. Transbound. Emerg. Dis. 2022, 69, 2201–2208. [Google Scholar] [CrossRef]
- Richter, M.; Schulz, K.; Elflein, T.; Achterberg, J.; Oļševskis, E.; Seržants, M.; Lamberga, K.; Conraths, F.J.; Sauter-Louis, C. The First Eighteen Months of African Swine Fever in Wild Boar in Saxony, Germany and Latvia-A Comparison. Pathogens 2023, 12, 87. [Google Scholar] [CrossRef]
- Borowik, T.; Cornulier, T.; Jędrzejewska, B. Environmental factors shaping ungulate abundances in Poland. Acta Theriol. 2013, 58, 403–413. [Google Scholar] [CrossRef]
- Morelle, K.; Lejeune, P. Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: A species distribution modelling approach. Eur. J. Wildl. Res. 2015, 61, 45–56. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; PD Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of Remote Sensing in Agriculture—A Review. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2270–2283. [Google Scholar] [CrossRef]
- Schepaschenko, D.; Chave, J.; Phillips, O.L.; Lewis, S.L.; Davies, S.J.; Réjou-Méchain, M.; Sist, P.; Scipal, K.; Perger, C.; Herault, B.; et al. The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Sci. Data 2019, 6, 198. [Google Scholar] [CrossRef] [PubMed]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Semenza, J.C.; Trinanes, J.; Lohr, W.; Sudre, B.; Löfdahl, M.; Martinez-Urtaza, J.; Nichols, G.L.; Rocklöv, J. Environmental Suitability of Vibrio Infections in a Warming Climate: An Early Warning System. Environ. Health Perspect. 2017, 125, 107004. [Google Scholar] [CrossRef]
- Mazzucato, M.; Marchetti, G.; Barbujani, M.; Mulatti, P.; Fornasiero, D.; Casarotto, C.; Scolamacchia, F.; Manca, G.; Ferrè, N. An integrated system for the management of environmental data to support veterinary epidemiology. Front. Vet. Sci. 2023, 10, 1069979. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Itzerott, S.; Kaden, K. Spektrale Normkurven—Eine notwendige Voraussetzung für die Klassifizierung der Fruchtartenverteilung aus Fernerkundungsdaten. PFG 2006, 3, 205–216. [Google Scholar]
- Itzerott, S.; Kaden, K. Ein neuer Algorithmus zur Klassifizierung landwirtschaftlicher Fruchtarten auf Basis spektraler Normkurven. PFG 2006, 6, 509–518. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In Proceedings of the 3rd Earth Resources Technology Satellite Symposium, Washington, DC, USA, 10–14 September 1973; pp. 309–317. [Google Scholar]
- Sulik, J.J.; Long, D.S. Spectral considerations for modeling yield of canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Metternicht, G. Vegetation indices derived from high-resolution airborne videography for precision crop management. Int. J. Remote Sens. 2003, 24, 2855–2877. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Kroschewski, K.; Kramer, M.; Micklich, A.; Staubach, C.; Carmanns, R.; Conraths, F.J. Animal disease outbreak control: The use of crisis management tools. Rev. Sci. Tech. 2006, 25, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, H.; Schulz, K.; Conraths, F.J.; Sauter-Louis, C. A Review of Environmental Risk Factors for African Swine Fever in European Wild Boar. Animals 2021, 11, 2692. [Google Scholar] [CrossRef]
Indices | |
---|---|
NDVI | Normalized Difference Vegetation Index [21] |
NDYI | Normalized Difference Yellowness Index [22] |
GNDVI | Green Normalized Difference Vegetation Index [23] |
PVR | Photosynthetic Vigour Ratio [24] |
MSAVI | Modified Soil Adjusted Vegetation Index [25] |
MSR | Modified Simple Ratio [26] |
REIP | Red-Edge Inflection Point [27] |
VIS | Band 2, 3, 4 |
NIR and SWIR | Band 5, 6, 7, 8 and 12 |
Radar | VV max, VH max, VV/VH-Ratio max, VV Median, VH Median, VV/VH-Ratio Median |
Crop Type | 12 Months | 8 Months | 4 Months |
---|---|---|---|
1: Grassland | 0.83 | 0.76 | 0.71 |
2: Fallow land | 0.46 | 0.28 | 0.22 |
3: Maize crop | 0.87 | 0.39 | 0.21 |
4: Rye | 0.74 | 0.29 | 0.20 |
5: Wheat | 0.77 | 0.72 | 0.50 |
6: Potato | 0.42 | 0.27 | 0.14 |
7: Sugar beet | 0.71 | 0.32 | 0.24 |
8: Rapeseed | 0.96 | 0.83 | 0.58 |
9: Barley | 0.72 | 0.56 | 0.38 |
10: Oats | 0.37 | 0.18 | 0.06 |
11: Woody plants | 0.21 | 0.25 | 0.21 |
12: Other cereals | 0.08 | 0.04 | 0.02 |
13: Root crops, rest | 0.11 | 0.49 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergmann, H.; Czaja, E.-M.; Frick, A.; Klaaß, U.; Marquart, R.; Rudovsky, A.; Holland, D.; Wysocki, P.; Lehnau, D.; Schröder, R.; et al. Remote Sensing Provides a Rapid Epidemiological Context for the Control of African Swine Fever in Germany. Sensors 2023, 23, 8202. https://doi.org/10.3390/s23198202
Bergmann H, Czaja E-M, Frick A, Klaaß U, Marquart R, Rudovsky A, Holland D, Wysocki P, Lehnau D, Schröder R, et al. Remote Sensing Provides a Rapid Epidemiological Context for the Control of African Swine Fever in Germany. Sensors. 2023; 23(19):8202. https://doi.org/10.3390/s23198202
Chicago/Turabian StyleBergmann, Hannes, Eva-Maria Czaja, Annett Frick, Ulf Klaaß, Ronny Marquart, Annett Rudovsky, Diana Holland, Patrick Wysocki, Daike Lehnau, Ronald Schröder, and et al. 2023. "Remote Sensing Provides a Rapid Epidemiological Context for the Control of African Swine Fever in Germany" Sensors 23, no. 19: 8202. https://doi.org/10.3390/s23198202
APA StyleBergmann, H., Czaja, E. -M., Frick, A., Klaaß, U., Marquart, R., Rudovsky, A., Holland, D., Wysocki, P., Lehnau, D., Schröder, R., Rogoll, L., Sauter-Louis, C., & Homeier-Bachmann, T. (2023). Remote Sensing Provides a Rapid Epidemiological Context for the Control of African Swine Fever in Germany. Sensors, 23(19), 8202. https://doi.org/10.3390/s23198202