Passive Soil Arching Effect in Aeolian Sand Backfills for Grillage Foundation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Equipment
2.2. Backfill Material
2.3. Test Conditions
2.4. Determination of Backfill Height
2.5. Model Test Procedure
3. Results and Analysis
3.1. Evolution of Soil Arching Effect
3.2. Influence of Beam Spacing on Soil Arching Effect
3.3. Influence of Relative Density on Soil Arching Effect
3.4. Influence of Water Content on Soil Arching Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Han, L.; Pan, K. Sediment transport characteristics above a gobi surface in northwestern China, and implications for aeolian environments. Aeolian Res. 2021, 53, 100745. [Google Scholar] [CrossRef]
- Yu, S.; Zhou, S.; Qin, J. Layout optimization of China’s power transmission lines for renewable power integration considering flexible resources and grid stability. Int. J. Electr. Power Energy Syst. 2022, 135, 107507. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.; Xu, J. Empirical evidence based effectiveness assessment of policy regimes for wind power development in China. Renew. Sustain. Energy Rev. 2022, 164, 112535. [Google Scholar] [CrossRef]
- Lake, R. Full scale tower and foundation tests help to identify reliability of existing lines and gives guidance of likely dynamic tower/foundation interaction behavior. In Proceedings of the CIGRE Session, Paris, France, 26–31 August 2012. [Google Scholar]
- Novotny, R.; Pech, P. Simplified Design of Grillage Foundations. Civ. Eng. J. 2018, 16, 101–107. [Google Scholar]
- Zhang, C.; Liu, G.; Yang, J. Influence of slab spacing on uplift bearing capacity of metal grillage foundations in aeolian sand. Chin. J. Rock Mech. Eng. 2022, 41, 2149–2160. [Google Scholar]
- Cepeбpякoв, Д.B. Иccлeдoваниe кoнcтpукции зeмлянoгo пoлoтна на cвайнoм ocнoвании c гибким pocтвepкoм. Бюллeтeнь Рeзультатoв Научных Иccлeдoваний 2023, 2023, 61–68. [Google Scholar] [CrossRef]
- Shutova, M.N.; Evtushenko, S.I.; Kalafatov, D.A. Analyzing efficiency of two-layer foundations for a power transmission line portal based on a numerical experiment. In Proceedings of the International Conference on Geotechnics Fundamentals and Applications in Construct.: New Materials, Structures, Technologies and Calculations, Saint Petersburg, Russia, 6–8 February 2019; pp. 335–340. [Google Scholar]
- Lai, H.; Zheng, J.; Zhang, R.; Cui, M.J. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation. J. Zhejiang Univ.-Sci. A 2016, 17, 803–817. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure. Zeitschrift der Vereines Deutscher Ingenieure; Rudolph Gaertner: Dusseldorf, Germany, 1895. [Google Scholar]
- Day, R.W. Design and repair for surficial slope failures. Pract. Period. Struct. Des. Constr. 1996, 1, 83–87. [Google Scholar] [CrossRef]
- Terzaghi, K. Theory of consolidation. Theor. Soil Mech. 1943, 265–296. [Google Scholar] [CrossRef]
- Smith, R.J.H. Theory and design related to the performance of reinforced soil structures. In Performance of Reinforced Soil Structures; Thomas Telford Publishing: London, UK, 1991; pp. 91–94. [Google Scholar]
- Wu, Y.; Zhao, Y.; Gong, Q.; Zornberg, J.G.; Zhou, S.; Wang, B. Alternant active and passive trapdoor problem: From experimental investigation to mathematical modeling. Acta Geotech. 2022, 17, 2971–2994. [Google Scholar] [CrossRef]
- Khatami, H.; Deng, A.; Jaksa, M. The arching effect in rubber–sand mixtures. Geosynth. Int. 2020, 27, 432–450. [Google Scholar] [CrossRef]
- Van Eekelen SJ, M.; Bezuijen, A.; Lodder, H.J.; van Tol, E.A. Model experiments on piled embankments. Part II. Geotext. Geomembr. 2012, 32, 82–94. [Google Scholar] [CrossRef]
- Lai, H.J.; Zheng, J.J.; Cui, M.J.; Chu, J. “Soil arching” for piled embankments: Insights from stress redistribution behaviour of DEM modelling. Acta Geotech. 2020, 15, 2117–2136. [Google Scholar] [CrossRef]
- Song, X.; Meng, F.Y.; Chen, R.P.; Wang, H.L.; Wu, H.N. Effect of seepage on soil arching effect in deep shield tunnel. Undergr. Space 2023, 12, 218–233. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Lin, H.; Tong, T. Soil arch effect analysis of shield tunnel in dry sandy ground. Int. J. Geomech. 2018, 18, 04018057. [Google Scholar] [CrossRef]
- Yun-Min, C.; Wei-Ping, C.; Ren-Peng, C. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotext. Geomembr. 2008, 26, 164–174. [Google Scholar] [CrossRef]
- Chevalier, B.; Combe, G.; Villard, P. Experimental and discrete element modeling studies of the trapdoor problem: Influence of the macro-mechanical frictional parameters. Acta Geotech. 2012, 7, 15–39. [Google Scholar] [CrossRef]
- Iglesia, G.R.; Einstein, H.H.; Whitman, R.V. Investigation of soil arching with centrifuge tests. J. Geotech. Geoenvironmental Eng. 2014, 140, 04013005. [Google Scholar] [CrossRef]
- Rui, R.; Van Tol, A.; Xia, Y.; Van Eekelen, S.; Hu, G. Investigation of soil-arching development in dense sand by 2D model tests. Geotech. Test. J. 2016, 39, 415–430. [Google Scholar] [CrossRef]
- Hong, W.P.; Bov, M.L.; Kim, H.M. Prediction of vertical pressure in a trench as influenced by soil arching. KSCE J. Civ. Eng. 2016, 20, 2711–2718. [Google Scholar] [CrossRef]
- Li, S.; You, Z.; Ho, I.H.; Ma, L.; Yu, Y.; Wang, C. Evolution of Soil Arching Subjected to Dynamic Loads. Int. J. Geomech. 2022, 22, 04022144. [Google Scholar] [CrossRef]
- Pham, H.V.; Dias, D.; Dudchenko, A. 3D modeling of geosynthetic-reinforced pile-supported embankment under cyclic loading. Geosynth. Int. 2020, 27, 157–169. [Google Scholar] [CrossRef]
- Liu, Q.W.; Wang, H.L.; Chen, R.P.; Yin, Z.Y.; Lin, X.T.; Wu, H.N. Effect of relative density of 2D granular materials on the arching effect through numerical trapdoor tests. Comput. Geotech. 2022, 141, 104553. [Google Scholar] [CrossRef]
- Peerun, M.I.; Ong, D.E.L.; Choo, C.S.; Cheng, W.C. Effect of interparticle behavior on the development of soil arching in soil-structure interaction. Tunn. Undergr. Space Technol. 2020, 106, 103610. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, W.; Huang, X.; Chen, R.; Liu, K. Face failure mechanism of shield tunnel in sandy ground with different low moisture contents. Arab. J. Geosci. 2022, 15, 1–16. [Google Scholar] [CrossRef]
- Sadrekarimi, J.; Abbasnejad, A. Arching effect in fine sand due to base yielding. Can. Geotech. J. 2010, 47, 366–374. [Google Scholar] [CrossRef]
- Ma, Y.; Lü, X.; Huang, M. DEM Study of the Three Dimensional Effect of Soil Arching in Piled-Embankments. In Proceedings of the 5th GeoChina International Conference 2018, Hangzhou, China, 23–25 July 2018. [Google Scholar]
- Bi, Z.; Gong, Q.; Guo, P.; Cheng, Q. Experimental study of the evolution of soil arching effect under cyclic loading based on trapdoor test and particle image velocimetry. Can. Geotech. J. 2020, 57, 903–920. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, F.; Han, J.; Ye, G.; Cheng, B.; Liu, L. Influence of Surface Footing Loading on Soil Arching above Multiple Buried Structures in Transparent Sand. Can. J. Civ. Eng. 2020, 48, 124–133. [Google Scholar] [CrossRef]
- Bransby, M.F.; Brown, M.J.; Knappett, J.A.; Hudacsek, P.; Morgan, N.; Cathie, D.; Maconochie, A.; Yun, G.; Ripley, A.G.; Brown, N.; et al. Vertical capacity of grillage foundations in sand. Rev. Can. Géotechnique 2011, 48, 1246–1265. [Google Scholar] [CrossRef]
- Bransby, M.F.; Hudacsek, P.; Brown, M.J.; Hudacsek, P. The vertical capacity of grillage foundations. Géotechnique 2012, 62, 201–211. [Google Scholar] [CrossRef]
- Aqoub, K.; Mohamed, M.; Sheehan, T. Analysis of sequential active and passive arching in granular soils. Int. J. Geotech. Eng. 2021, 15, 598–607. [Google Scholar] [CrossRef]
- Ye, J.; Xie, Q.; Zhao, X.; Zhao, Y.R. Soil arching effect of double-row piles: Laboratory test and numerical interpretation. Electron. J. Geotech. Eng. 2014, 19, 511–520. [Google Scholar]
- Embaby, K.; El Naggar, M.H.; El Sharnouby, M. Performance of large-span arched soil–steel structures under soil loading. Thin-Walled Struct. 2022, 172, 108884. [Google Scholar] [CrossRef]
- Ren, X.; Luo, L.; Li, F.; Pan, R.; Liu, L.; Mu, T. Experimental Study on the Evolution of Passive Soil Arch in Front of Antislide Piles in Loess Area. China J. Highw. Transp. 2022, 35, 86. [Google Scholar]
- Ma, D.; Cheng, L. Study on Passive Soil Arching Effect in Front of Cantilever Pile Based on FLAC^(3D). World Sci. Res. J. 2021, 7, 43–50. [Google Scholar]
- Khatami, H.; Deng, A.; Jaksa, M. Passive arching in rubberized sand backfills. Can. Geotech. J. 2020, 57, 549–567. [Google Scholar] [CrossRef]
- Bazán-Zurita, E.; Williams, D.M.; Bledsoe, J.K.; Pugh, A.D.; DiGioia, A.M., Jr.; Mozer, J.D.; Newman, F.B. AEP’s 765 kV Transmission Line, LRFD Approach for Foundations. Electr. Transm. Line Substation Struct. 2007, 195–206. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, X.; Han, J.; Yang, Y. Two-Dimensional Soil-Arching Behavior under Static and Cyclic Loading. Int. J. Geomech. 2019, 19, 04019091. [Google Scholar] [CrossRef]
- Zhang, R.; Su, D.; Lin, X.; Lei, G.; Chen, X. DEM analysis of passive arching in a shallow trapdoor under eccentric loading. Particuology 2023, 77, 14–28. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, Q.; Wu, Y.; Tian, Z.; Zhou, S.; Fu, L. Progressive failure mechanism in granular materials subjected to an alternant active and passive trapdoor. Transp. Geotech. 2021, 28, 100529. [Google Scholar] [CrossRef]
- Liu, G.; Tian, S.; Xu, G.; Zhang, C.; Cai, M. Combination of effective color information and machine learning for rapid prediction of soil water content. J. Rock Mech. Geotech. Eng. 2023, 15, 2441–2457. [Google Scholar] [CrossRef]
- Wang, Y. Type door rigid frame-pile arch system characteristics and disaster prevention application in thermodynamics. Therm. Sci. 2019, 23, 2749–2755. [Google Scholar] [CrossRef]
- Ye, M.; Xie, Q.; Ni, P.; Qin, X. Improved analytical solution of lateral soil restraint for pipes buried in dry sand considering arching effects. Can. Geotech. J. 2022, 60, 802–816. [Google Scholar] [CrossRef]
- Eibl, J.; Landahl, H.; Häußler, U.; Gladen, W. Zur Frage des Silodrucks. Beton-Und Stahlbetonbau 1982, 77, 104–110. [Google Scholar] [CrossRef]
- Moradi, G.; Abbasnejad, A. Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb. Geomech. Eng. 2015, 8, 829–844. [Google Scholar] [CrossRef]
- Han, J.; Gabr, M.A. Numerical analysis of geosynthetic-reinforced and pile-supported soil platforms over soft soil. J. Geotech. Geoenviron. Eng. 2002, 128, 44–53. [Google Scholar] [CrossRef]
- Low, B.K.; Tang, S.K.; Choa, V. Arching in Piled Embankments. J. Geotech. Eng. 1992, 120, 1917–1938. [Google Scholar] [CrossRef]
- Rothe, S.; Sarakiotis, V.; Hussmann, H. Where to place the camera. In Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology, Parramatta, Australia, 12–15 November 2019. [Google Scholar]
- Li, Z.; Liu, J.; Liu, H.; Zhao, H.; Xu, R.; Gurkalo, F. Stress distribution in direct shear loading and its implication for engineering failure analysis. Int. J. Appl. Mech. 2023, 15, 2350036. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Water content ω [%] | 2.8 |
Void ratio e [-] | 0.73 |
Specific gravity Gs [-] | 2.67 |
Density ρ [kg/m3] | 1.74 |
Relative density Dr [%] | 68.8 |
Angle of shearing resistance φ [°] | 40.8 |
The Proportion of Minerals | ||||
---|---|---|---|---|
Quartz | Plagioclase | Potash Feldspar | Dolomite | Illite |
55.2% | 28.4% | 15.6% | 0.6 | 0.2 |
SiO2 | Al2O3 | K2O | CaO | Na2O |
72.33% | 14.37% | 3.50% | 3.02% | 2.67% |
Fe2O3 | MgO | TiO2 | P2O5 | BaO |
1.85% | 1.32% | 0.49% | 0.13% | 0.100% |
SO3 | SrO | MnO | ZrO2 | Rb2O |
0.063% | 0.057% | 0.040% | 0.019% | 0.012% |
Test Cases | Backfill Height H (mm) | Trapdoor Width | Ratio of Filling Height to Trapdoor Width H/s (-) | Relative Density Dr (%) | Water Content ω (%) | ||
---|---|---|---|---|---|---|---|
Group | No. | Code | s (mm) | ||||
I | 1 | F1 | 200 | 125 | 1.60 | 70 | 3 |
2 | F2 | 300 | 125 | 2.40 | 70 | 3 | |
3 | F3 | 400 | 125 | 3.20 | 70 | 3 | |
4 | F4 | 500 | 125 | 4.00 | 70 | 3 | |
II | 5 | T1 | 400 | 50 | 8.00 | 70 | 3 |
6 | T2 | 400 | 100 | 4.00 | 70 | 3 | |
7 | T3 | 400 | 150 | 2.67 | 70 | 3 | |
8 | T4 | 400 | 200 | 2.00 | 70 | 3 | |
III | 9 | M1(R3) | 400 | 125 | 3.20 | 30 | 3 |
10 | M2 | 400 | 125 | 3.20 | 50 | 3 | |
11 | M3 | 400 | 125 | 3.20 | 70 | 3 | |
12 | M4 | 400 | 125 | 3.20 | 90 | 3 | |
IV | 13 | R1 | 400 | 125 | 3.20 | 70 | 5 |
14 | R2 | 400 | 125 | 3.20 | 70 | 7 | |
15 | R4 | 400 | 125 | 3.20 | 70 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Liu, G.; Tian, S.; Cai, M. Passive Soil Arching Effect in Aeolian Sand Backfills for Grillage Foundation. Sensors 2023, 23, 8098. https://doi.org/10.3390/s23198098
Zhang C, Liu G, Tian S, Cai M. Passive Soil Arching Effect in Aeolian Sand Backfills for Grillage Foundation. Sensors. 2023; 23(19):8098. https://doi.org/10.3390/s23198098
Chicago/Turabian StyleZhang, Chengcheng, Guanshi Liu, Shengkui Tian, and Mingxuan Cai. 2023. "Passive Soil Arching Effect in Aeolian Sand Backfills for Grillage Foundation" Sensors 23, no. 19: 8098. https://doi.org/10.3390/s23198098
APA StyleZhang, C., Liu, G., Tian, S., & Cai, M. (2023). Passive Soil Arching Effect in Aeolian Sand Backfills for Grillage Foundation. Sensors, 23(19), 8098. https://doi.org/10.3390/s23198098