Sensors on the Internet of Things Systems for Urban Disaster Management: A Systematic Literature Review
Abstract
:1. Introduction
- What kinds of sensors are used to collect data? And what kinds of data are focused on the pre-disaster stage and post-disaster stages, respectively?
- 2.
- What kinds of communication technologies and protocols are used to transmit the data from sensors?
- 3.
- What methods were used to analyze sensor data?
- 4.
- What are the differences between the IoT technologies used in the pre-disaster and post-disaster stages?
2. Methodology
3. Descriptive Analysis
4. IoT Systems in the Pre-Disaster Stage
4.1. Sensors
4.1.1. Earthquake
4.1.2. Landslides
4.1.3. Floods
4.1.4. Others
4.2. Communication Technologies and Protocols
4.3. Analysis and Applications of Sensor Data
5. IoT Systems in the Post-Disaster Stage
5.1. Sensors
5.2. Communication Technologies and Protocols
5.3. Analysis and Applications of Sensor Data
6. Comparison between the IoT Applied in Pre-Disaster and Post-Disaster Stages
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blasi, S.; Ganzaroli, A.; De Noni, I. Smartening sustainable development in cities: Strengthening the theoretical linkage between smart cities and SDGs. Sustain. Cities Soc. 2022, 80, 103793. [Google Scholar] [CrossRef]
- Ullah, Z.; Naeem, M.; Coronato, A.; Ribino, P.; De Pietro, G. Blockchain Applications in Sustainable Smart Cities. Sustain. Cities Soc. 2023, 97, 104697. [Google Scholar] [CrossRef]
- Buyukozkan, G.; Ilicak, O.; Feyzioglu, O. A review of urban resilience literature. Sustain. Cities Soc. 2022, 77, 103579. [Google Scholar] [CrossRef]
- Xia, H.; Liu, Z.; Efremochkina, M.; Liu, X.; Lin, C. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Ahmad, R.F.; Malik, A.S.; Qayyum, A.; Kamel, N. Disaster Monitoring in Urban and Remote Areas using Satellite Stereo Images: A Depth Estimation Approach. In Proceedings of the IEEE 11th International Colloquium on Signal Processing & Its Applications (CSPA), Kuala Lumpur, Malaysia, 6–8 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 150–155. [Google Scholar]
- Tang, H.; Elalouf, A.; Levner, E.; Cheng, T.C.E. Efficient computation of evacuation routes on a three-dimensional geometric network. Comput. Ind. Eng. 2014, 76, 231–242. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Hu, J.Y.; Song, X.P.; Li, Z.H.; Yang, K.H.; Sha, Y.Z. How does social learning facilitate urban disaster resilience? A systematic review. Environ. Hazards-Hum. Policy Dimens. 2020, 19, 107–129. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, C.; Aziz, N.M.; Kamaruzzaman, S.N. BIM–GIS Integrated Utilization in Urban Disaster Management: The Contributions, Challenges, and Future Directions. Remote Sens. 2023, 15, 1331. [Google Scholar] [CrossRef]
- Shah, S.A.; Seker, D.Z.; Rathore, M.M.; Hameed, S.; Ben Yahia, S.; Draheim, D. Towards Disaster Resilient Smart Cities: Can Internet of Things and Big Data Analytics Be the Game Changers? IEEE Access 2019, 7, 91885–91903. [Google Scholar] [CrossRef]
- Ali, K.; Nguyen, H.X.; Vien, Q.T.; Shah, P.; Raza, M.; Paranthaman, V.V.; Er-Rahmadi, B.; Awais, M.; ul Islam, S.; Rodrigues, J. Review and Implementation of Resilient Public Safety Networks: 5G, IoT, and Emerging Technologies. IEEE Netw. 2021, 35, 18–25. [Google Scholar] [CrossRef]
- Munawar, H.S.; Mojtahedi, M.; Hammad, A.W.A.; Kouzani, A.; Mahmud, M.A.P. Disruptive technologies as a solution for disaster risk management: A review. Sci. Total Environ. 2022, 806, 15. [Google Scholar] [CrossRef]
- Chen, M.; Lu, Y.J.; Peng, Y.; Chen, T.T.; Zhang, Y.Y. Key Elements of Attentions for Enhancing Urban Resilience: A Comparison of Singapore, Hong Kong and Hangzhou. Buildings 2022, 12, 340. [Google Scholar] [CrossRef]
- Sinha, A.; Kumar, P.; Rana, N.P.; Islam, R.; Dwivedi, Y.K. Impact of internet of things (IoT) in disaster management: A task-technology fit perspective. Ann. Oper. Res. 2019, 283, 759–794. [Google Scholar] [CrossRef]
- Esposito, M.; Palma, L.; Belli, A.; Sabbatini, L.; Pierleoni, P. Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review. Sensors 2022, 22, 2124. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, S.F.; Santos, R. Human-centric wireless sensor networks to improve information availability during urban search and rescue activities. Inf. Fusion 2015, 22, 71–84. [Google Scholar] [CrossRef]
- Tudose, D.S.; Deaconu, I.; Musat, A. Geo-dynamic monitoring using wireless sensor networks. In Proceedings of the 15th RoEduNet Conference—Networking in Education and Research, Bucharest, Romania, 7–9 September 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 9324035. [Google Scholar] [CrossRef]
- Amodu, O.A.; Nordin, R.; Jarray, C.; Bukar, U.A.; Mahmood, R.A.R.; Othman, M. A Survey on the Design Aspects and Opportunities in Age-Aware UAV-Aided Data Collection for Sensor Networks and Internet of Things Applications. Drones 2023, 7, 260. [Google Scholar] [CrossRef]
- de Camargo, E.T.; Spanhol, F.A.; Slongo, J.S.; da Silva, M.V.R.; Pazinato, J.; Lobo, A.V.D.; Coutinho, F.R.; Pfrimer, F.W.D.; Lindino, C.A.; Oyamada, M.S.; et al. Low-Cost Water Quality Sensors for IoT: A Systematic Review. Sensors 2023, 23, 4424. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Creedon, L.; Gharbia, S.S. Low-Cost Sensors for Monitoring Coastal Climate Hazards: A Systematic Review and Meta-Analysis. Sensors 2023, 23, 1717. [Google Scholar] [CrossRef]
- Qadir, Z.; Ullah, F.; Munawar, H.S.; Al-Turjman, F. Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review. Comput. Commun. 2021, 168, 114–135. [Google Scholar] [CrossRef]
- Tei, A.I.; Doukha, Z.; Zafoune, Y. 3DMAT: Data dissemination for disaster management using available technology in a smart city. Ann. Télécommun. 2021, 76, 633–645. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Xu, G.; Shi, Y.; Sun, X.; Shen, W. Internet of Things in Marine Environment Monitoring: A Review. Sensors 2019, 19, 1711. [Google Scholar] [CrossRef] [PubMed]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.; Butler, L.; Roozkhosh, F. Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef]
- Zhang, Y.; Moyle, B.; Dupré, K.; Lohmann, G.; Desha, C.; MacKenzie, I. Tourism and natural disaster management: A systematic narrative review. Tour. Rev. (Assoc. Int. d’Experts Sci. Tour.), 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Iqbal, U.; Perez, P.; Barthelemy, J. A process-driven and need-oriented framework for review of technological contributions to disaster management. Heliyon 2021, 7, e08405. [Google Scholar] [CrossRef]
- Cicek, D.; Kantarci, B. Use of Mobile Crowdsensing in Disaster Management: A Systematic Review, Challenges, and Open Issues. Sensors 2023, 23, 1699. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, P.D.; Sood, S.K. ICT in disaster management context: A descriptive and critical review. Environ. Sci. Pollut. Res. Int. 2022, 29, 86796–86814. [Google Scholar] [CrossRef]
- Oktari, R.S.; Munadi, K.; Idroes, R.; Sofyan, H. Knowledge management practices in disaster management: Systematic review. Int. J. Disaster Risk Reduct. 2020, 51, 101881. [Google Scholar] [CrossRef]
- Ritchie, B.W.; Jiang, Y. A review of research on tourism risk, crisis and disaster management: Launching the annals of tourism research curated collection on tourism risk, crisis and disaster management. Ann. Tour. Res. 2019, 79, 102812. [Google Scholar] [CrossRef]
- Mishra, D.; Kumar, S.; Hassini, E. Current trends in disaster management simulation modelling research. Ann. Oper. Res. 2019, 283, 1387–1411. [Google Scholar] [CrossRef]
- Goldschmidt, K.H.; Kumar, S. Humanitarian operations and crisis/disaster management: A retrospective review of the literature and framework for development. Int. J. Disaster Risk Reduct. 2016, 20, 1–13. [Google Scholar] [CrossRef]
- Furquim, G.; Pessin, G.; Faical, B.S.; Mendiondo, E.M.; Ueyama, J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory. Neural Comput. Appl. 2016, 27, 1129–1141. [Google Scholar] [CrossRef]
- Kim, S.; Khan, I.; Choi, S.; Kwon, Y.W. Earthquake Alert Device Using a Low-Cost Accelerometer and its Services. IEEE Access 2021, 9, 121964–121974. [Google Scholar] [CrossRef]
- Siringoringo, D.M.; Fujino, Y.; Suzuki, M. Long-term continuous seismic monitoring of multi-span highway bridge and evaluation of bearing condition by wireless sensor network. Eng. Struct. 2023, 276, 20. [Google Scholar] [CrossRef]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiro, M. Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin. Nat. Hazards 2018, 92, 1237–1265. [Google Scholar] [CrossRef]
- Furquim, G.; Filho, G.P.R.; Jalali, R.; Pessin, G.; Pazzi, R.W.; Ueyama, J. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data. Sensors 2018, 18, 907. [Google Scholar] [CrossRef]
- Mendoza-Cano, O.; Aquino-Santos, R.; Lopez-de la Cruz, J.; Edwards, R.M.; Khouakhi, A.; Pattison, I.; Rangel-Licea, V.; Castellanos, E.; Martinez-Preciado, M.A.; Rincon-Avalos, P.; et al. Experiments of an IoT-based wireless sensor network for flood monitoring in Colima, Mexico. J. Hydroinform. 2021, 23, 385–401. [Google Scholar] [CrossRef]
- Siek, M.; Larry, L. Design and Implementation of Internet of Things and Cloud Technology in Flood Risk Mitigation. In Proceedings of the 3rd International Conference on Cybernetics and Intelligent System (ICORIS), Makassar, Indonesia, 25–26 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 516–521. [Google Scholar]
- Malik, H.; Kandler, N.; Alam, M.M.; Annus, I.; Moullec, Y.; Kuusik, A. Evaluation of Low Power Wide Area Network Technologies for Smart Urban Drainage Systems. In Proceedings of the IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 12–14 March 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Furquim, G.; Neto, F.; Pessin, G.; Ueyama, J.; de Albuquerque, J.P.; Clara, M.; Mendiondo, E.M.; de Souza, V.C.B.; de Souza, P.; Dimitrova, D.; et al. Combining wireless sensor networks and machine learning for flash flood nowcasting. In Proceedings of the 28th IEEE International Conference on Advanced Information Networking and Applications Workshops (IEEE WAINA), Victoria, BC, Canada, 13–16 May 2014; pp. 67–72. [Google Scholar]
- Dai, W.J.; Tang, Y.N.; Zhang, Z.Y.; Cai, Z.M. Ensemble Learning Technology for Coastal Flood Forecasting in Internet-of-Things-Enabled Smart City. Int. J. Comput. Intell. Syst. 2021, 14, 166. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abul Kashem, M.; Mohiuddin, M.; Hossain, M.A.; Moon, N.N. Future City of Bangladesh: IoT Based Autonomous Smart Sewerage and Hazard Condition Sharing System. In Proceedings of the 6th IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), Bhubaneswar, India, 26–27 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 138–142. [Google Scholar]
- Garcia, V.M.; Granados, R.P.; Medina, M.E.; Ochoa, L.; Mondragon, O.A.; Cheu, R.L.; Villanueva-Rosales, N.; Rosillo, V.M.L. Management of real-time data for a smart flooding alert system. In Proceedings of the IEEE International Smart Cities Conference (ISC2), virtual, 28 September–1 October 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Dhaya, R.; Ahanger, T.A.; Asha, G.R.; Ahmed, E.A.; Tripathi, V.; Kanthavel, R.; Atiglah, H.K. Cloud-Based IoE Enabled an Urban Flooding Surveillance System. Comput. Intell. Neurosci. 2022, 2022, 8470496. [Google Scholar] [CrossRef]
- Ragnoli, M.; Stornelli, V.; Del Tosto, D.; Barile, G.; Leoni, A.; Ferri, G. Flood monitoring: A LoRa based case-study in the city of L’Aquila. In Proceedings of the 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Villasimius, Italy, 12–15 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 329–332. [Google Scholar]
- Biabani, M.; Fotouhi, H.; Yazdani, N. An Energy-Efficient Evolutionary Clustering Technique for Disaster Management in IoT Networks. Sensors 2020, 20, 2647. [Google Scholar] [CrossRef]
- Katsikogiannis, P.; Zervas, E.; Kaltsas, G. A wireless sensor network for building structural health monitoring and seismic detection. In Proceedings of the 3rd International Conference on Micro-Nanoelectronics, Nanotechnology and MEMs, Athens, Greece, 18–21 November 2007; pp. 3834–3838. [Google Scholar]
- Taale, A.; Ventura, C.E.; Marti, J. On the feasibility of IoT-based smart meters for earthquake early warning. Earthq. Spectra 2021, 37, 2066–2083. [Google Scholar] [CrossRef]
- Castelli, F.; Lentini, V.; Ferraro, A.; Grasso, S. Seismic Risk Evaluation for the Emergency Management. Ann. Geophys. 2018, 61, 220. [Google Scholar] [CrossRef]
- Santos, A.S.; Corsi, A.C.; Almeida, R.Z.H.; Noda, M.K.; Goncales, I.; Ribeiro, R.N.; Machado, C.O.; Polkorny, M.; Otero, M.D.; Abreu, A.E.S.; et al. Feasibility study for detecting shallow landslides using IoT devices in smart cities. In Proceedings of the IEEE International Smart Cities Conference (ISC2), Manchester, UK, 7–10 September 2021. [Google Scholar]
- Ciampalini, A.; Farina, P.; Lombardi, L.; Nocentini, M.; Taurino, V.; Guidi, R.; della Pina, F.; Tavarini, D. Integration of Satellite InSAR with a Wireless Network of Geotechnical Sensors for Slope Monitoring in Urban Areas: The Pariana Landslide Case (Massa, Italy). Remote Sens. 2021, 13, 2534. [Google Scholar] [CrossRef]
- Wang, H.H.; Tuo, X.G.; Zhang, G.Y.; Peng, F.L. Panzhihua airport landslide (3 October 2009) and an emergency monitoring and warning system based on the internet of things. J. Mt. Sci. 2013, 10, 873–884. [Google Scholar] [CrossRef]
- Miao, F.; Yuan, Q. A WebGIS-Based Information System for Monitoring and Warning of Geological Disasters for Lanzhou City, China. Adv. Meteorol. 2013, 2013, 769270. [Google Scholar] [CrossRef]
- Covenas, F.E.M.; Palomares, R.; Milla, M.A.; Verastegui, J.; Cornejo, J. Design and development of a low-cost wireless network using IoT technologies for a mudslides monitoring system. In Proceedings of the IEEE URUCON Conference (IEEE URUCON), Montevideo, Uruguay, 24–26 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 172–176. [Google Scholar]
- Zhang, T. Advanced Wavelet Sampling Algorithm for IoT based environmental monitoring and management. Comput. Commun. 2020, 150, 547–555. [Google Scholar] [CrossRef]
- Ferraz, R.; das Neves, C.R.G.; Silva, J. Internet of things with Web technologies solution for flood notification in Sao Paulo. In Proceedings of the 5th Edition of The Global IoT Summit (GIoTS), Dublin, Ireland, 20–22 June 2022; pp. 124–134. [Google Scholar]
- Wang, Q.H.; Abdelrahman, W. High-Precision AI-Enabled Flood Prediction Integrating Local Sensor Data and 3rd Party Weather Forecast. Sensors 2023, 23, 3065. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.F.; Cheng, X.J.; Xiao, X.; Chen, Z.Q.; Wang, Z.H.; Xu, J.; Zhao, D.Z. Integrated application of water informatization: A case study from Zengcheng Guangzhou China. In Proceedings of the 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 98–102. [Google Scholar]
- Furquim, G.; Pessin, G.; Gomes, P.H.; Mendiondo, E.M.; Ueyama, J. A distributed approach to flood prediction using a WSN and ML: A comparative study of ML techniques in a WSN deployed in Brazil. In Proceedings of the 16th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), Wroclaw, Poland, 14–16 October 2022; pp. 485–492. [Google Scholar]
- Loftis, J.D.; Forrest, D.; Katragadda, S.; Spencer, K.; Organski, T.; Nguyen, C.; Rhee, S. StormSense: A New Integrated Network of IoT Water Level Sensors in the Smart Cities of Hampton Roads, VA. Mar. Technol. Soc. J. 2018, 52, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Gabbar, H.A.; Chahid, A.; Isham, M.U.; Grover, S.; Singh, K.P.; Elgazzar, K.; Mousa, A.; Ouda, H. HAIS: Highways Automated-Inspection System. Technologies 2023, 11, 51. [Google Scholar] [CrossRef]
- Depetris, I.L.; Romani, I.D.; Gonzalez, I.J.; Bottero, C.; Rui, M.; Buratto, V.; Lorenzati, J.; Vaira, D.; Rui, E. Control by IoT in Drinking Water Pumping Station and Cisterns. In Proceedings of the 19th Workshop on Information Processing and Control (RPIC), San Juan, Argentina, 3–5 November 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Tyagi, V.; Rawat, N.; Ram, M. Reliability modelling and sensitivity analysis of IoT based flood alerting system. J. Qual. Maint. Eng. 2021, 27, 292–307. [Google Scholar] [CrossRef]
- Furquim, G.; Mello, R.; Pessin, G.; Faical, B.S.; Mendiondo, E.M.; Ueyama, J. An accurate flood forecasting model using wireless sensor networks and chaos theory: A case study with real WSN deployment in Brazil. In Proceedings of the 15th International Conference on Engineering Applications of Neural Networks (EANN), Techical University, Sofia, Bulgaria, 5–7 September 2014; pp. 92–102. [Google Scholar]
- Mousa, M.; Oudat, E.; Claudel, C. A novel dual traffic/flash flood monitoring system using passive infrared/ultrasonic sensors. In Proceedings of the 12th IEEE International Conference on Mobile Ad Hoc and Sensor Systems (IEEE MASS), Dallas, TX, USA, 19–22 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 388–397. [Google Scholar]
- Liu, Z.Q.; Huang, J.; Wang, Q.F.; Wang, Y.B.; Fu, J. Real-time Barrier Lakes Monitoring and Warning System Based on Wireless Sensor Network. In Proceedings of the 4th International Conference on Intelligent Control and Information Processing (ICICIP), Beijing, China, 9–11 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 551–554. [Google Scholar]
- Castro, U.; Avila, J.; Sustaita, C.V.; Hernandez, M.A.; Larios, V.M.; Villanueva-Rosales, N.; Mondragon, O.; Cheu, R.L.; Maciel, R. Towards Smart Mobility During Flooding Events in Urban Areas using Crowdsourced Information. In Proceedings of the 5th IEEE Annual International Smart Cities Conference (ISC2), Université Hassan II de Casablanca, Casablanca, Morocco, 14–17 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 154–159. [Google Scholar]
- Junior, F.E.F.; Nonato, L.G.; Ranieri, C.M.; Ueyama, J. Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection. Sensors 2021, 21, 7506. [Google Scholar] [CrossRef]
- Gabriel, P.E.; Butt, S.A.; Francisco, E.O.; Alejandro, C.P.; Maleh, Y. Performance analysis of 6LoWPAN protocol for a flood monitoring system. EURASIP J. Wirel. Commun. Netw. 2022, 2022, 16. [Google Scholar] [CrossRef]
- Park, M.S.; Baek, K. Quality Management System for an IoT Meteorological Sensor Network-Application to Smart Seoul Data of Things (S-DoT). Sensors 2023, 23, 2384. [Google Scholar] [CrossRef]
- Alhamidi; Pakpahan, V.H.; Simanjuntak, J.E.S. Analysis of tsunami disaster resilience in Bandar Lampung Bay Coastal Zone. In Proceedings of the 1st ITB Centennial and 4th PlanoCosmo International Conference, Institut Teknologi Bandung, Bandung, Indonesia, 2–5 April 2018; IOP: Bristol, UK, 2018. [Google Scholar]
- Aljohani, S.L.; Alenazi, M.J.F. MPResiSDN: Multipath Resilient Routing Scheme for SDN-Enabled Smart Cities Networks. Appl. Sci. 2021, 11, 1900. [Google Scholar] [CrossRef]
- Viegas, D.X. SWeFS: Sensor Web Fire Shield for Forest Fire Detection and Monitoring; University of Coimbra: Coimbra, Portugal, 2014; pp. 1537–1547. [Google Scholar] [CrossRef]
- Wang, E.K.; Wang, F.; Kumari, S.; Yeh, J.H.; Chen, C.M. Intelligent monitor for typhoon in IoT system of smart city. J. Supercomput. 2021, 77, 3024–3043. [Google Scholar] [CrossRef]
- Ulil, A.M.R.; Fiannurdin, S.S.; Tjahjono, A.; Basuki, D.K. The Vehicle as a Mobile Sensor Network base IoT and Big Data for Pothole Detection Caused by Flood Disaster. In Proceedings of the 12th International Interdisciplinary Studies Seminar on Environmental Conservation and Education for Sustainable Development (IISS), Malang, Indonesia, 14–15 November 2018; IOP: Bristol, UK, 2018. [Google Scholar]
- Kanak, A.; Arif, I.; Kumas, O.; Ergun, S. Extending BIM to urban semantic context for data-driven crisis preparedness. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3813–3818. [Google Scholar]
- Dhaya, R.; Kanthavel, R. IoT based urban flooding high definition surveillance using concurrent multipath wireless system. Earth Sci. Inform. 2022, 15, 1407–1416. [Google Scholar] [CrossRef]
- Gomes, J.L.; Jesus, G.; Rogeiro, J.; Oliveira, A.; da Costa, R.T.; Fortunato, A.B. An innovative web platform for flood risk management. In Proceedings of the 3rd International Conference on Innovative Network Systems and Applications (iNetSApp) Held in Conjunction with Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 217–231. [Google Scholar]
- Luo, J.; Xu, L.; Jamont, J.P.; Zeng, L.; Shi, Z. Flood decision support system on agent grid: Method and implementation. Enterp. Inf. Syst. 2007, 1, 49–68. [Google Scholar] [CrossRef]
- Aljohani, F.H.; Sen, A.A.A.; Ramazan, M.S.; Alzahrani, B.; Bahbouh, N.M. A Smart Framework for Managing Natural Disasters Based on the IoT and ML. Appl. Sci. 2023, 13, 3888. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, J.G.; Zhou, Y.; Lv, N.; Liang, X.X.; Wan, S.H. An edge intelligence empowered flooding process prediction using Internet of things in smart city. J. Parallel Distrib. Comput. 2022, 165, 66–78. [Google Scholar] [CrossRef]
- Goyal, H.R.; Ghanshala, K.K.; Sharma, S. Post flood management system based on smart IoT devices using AI approach. In Proceedings of the International Conference on Technological Advancements in Materials Science and Manufacturing (ICTAMSM), Dehradun, India, 19–20 February 2021; pp. 10411–10417. [Google Scholar]
- Lwin, K.K.; Sekimoto, Y.; Takeuchi, W.; Zettsu, K. City geospatial dashboard: IoT and big data analytics for geospatial solutions provider in disaster management. In Proceedings of the 6th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), ESIEE Paris, Paris, France, 18–20 December 2019. [Google Scholar]
- Malik, H.; Zatar, W. A Real-Time and Low-Cost Flash Flood Monitoring System to Support Transportation Infrastructure. In Proceedings of the 44th Annual IEEE-Computer-Society International Conference on Computers, Software, and Applications (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 1111–1112. [Google Scholar]
- Sahil, H.; Sood, S.K. Fog-Cloud centric IoT-based cyber physical framework for panic oriented disaster evacuation in smart cities. Earth Sci. Inform. 2022, 15, 1449–1470. [Google Scholar] [CrossRef]
- Suri, N.; Zielinski, Z.; Tortonesi, M.; Fuchs, C.; Pradhan, M.; Wrona, K.; Furtak, J.; Vasilache, D.B.; Street, M.; Pellegrini, V.; et al. Exploiting Smart City IoT for Disaster Recovery Operations. In Proceedings of the 4th IEEE World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 458–463. [Google Scholar]
- Johnsen, F.T.; Zielinski, Z.; Wrona, K.; Suri, N.; Fuchs, C.; Pradhan, M.; Furtak, J.; Vasilache, B.; Pellegrini, V.; Dyk, M.; et al. Application of IoT in military operations in a smart city. In Proceedings of the International Conference on Military Communications and Information Systems (ICMCIS), Warsaw, Poland, 22–23 May 2018. [Google Scholar]
- Korkalainen, M.; Mayra, A.P.; Kansala, K. An open communication and sensor platform for urban search and rescue operations. In Proceedings of the Conference on Unmanned/Unattended Sensors and Sensor Networks IX, Edinburgh, UK, 26–27 September 2012. [Google Scholar]
- Boukerche, A.; Coutinho, R.W.L. Smart disaster detection and response system for smart cities. In Proceedings of the IEEE Symposium on Computers and Communications (IEEE ISCC), Natal, Brazil, 25–28 June 2018; pp. 1107–1112. [Google Scholar]
- Anagnostopoulos, T.; Ntalianis, K.; Tsapatsoulis, N. IoT-enabled ambulances assisting citizens’ wellbeing after earthquake disasters in smart cities. In Proceedings of the IEEE International Congres on Cybermatics/12th IEEE International Conference on Cyber, Physical and Social Computing (CPSCom)/15th IEEE International Conference on Green Computing and Communications (GreenCom)/12th IEEE International Conference on Internet of Things (iThings)/5th IEEE International Conference on Smart Data, Atlanta, GA, USA, 14–17 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 922–928. [Google Scholar]
- Goyal, H.R.; Ghanshala, K.K.; Sharma, S. Flash flood risk management modeling in indian cities using IoT based reinforcement learning. In Proceedings of the International Conference on Technological Advancements in Materials Science and Manufacturing (ICTAMSM), Dehradun, India, 19–20 February 2021. [Google Scholar]
- Antonacci, E.; Ceci, A.M.; Colarieti, A.; Gattulli, V.; Graziosi, F.; Lepidi, M.; Potenza, F. Dynamic testing and health monitoring via wireless sensor networks in the post-earthquake assessment of structural conditions at L’Aquila. In Proceedings of the 8th International Conference on Structural Dynamics (EURODYN), Leuven, Belgium, 4–6 July 2011; pp. 2440–2447. [Google Scholar]
- Ehsani, B.; Karimi, H.; Bakhshi, A.; Aghsami, A.; Rabbani, M. Designing humanitarian logistics network for managing epidemic outbreaks in disasters using Internet-of-Things. A case study: An earthquake in Salas-e-Babajani city. Comput. Ind. Eng. 2023, 175, 108821. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Wang, C. Design of Traffic Emergency Response System Based on Internet of Things and Data Mining in Emergencies. IEEE Access 2019, 7, 113950–113962. [Google Scholar] [CrossRef]
- Campioni, L.; Lenzi, R.; Poltronieri, F.; Pradhan, M.; Tortonesi, M.; Stefanelli, C.; Suri, N. MARGOT: Dynamic IoT resource discovery for HADR environments. In Proceedings of the IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019. [Google Scholar]
- Alvarez, F.; Almon, L.; Radtki, H.; Hollick, M. Bluemergency: Mediating post-disaster communication systems using the Internet of Things and Bluetooth mesh. In Proceedings of the 9th Annual IEEE Global Humanitarian Technology Conference (IEEE GHTC), Seattle, WA, USA, 17–20 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 29–36. [Google Scholar]
- Ai-Turjman, F. Cognitive routing protocol for disaster-inspired Internet of Things. Futur. Gener. Comp. Syst. 2019, 92, 1103–1115. [Google Scholar] [CrossRef]
- Tan, S.K.; Munro, A. Adaptive probabilistic epidemic protocol for wireless sensor networks in an urban environment. In Proceedings of the 16th International Conference on Computer Communications and Networks, Honolulu, HI, USA, 13–16 August 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1105–1110. [Google Scholar]
- Kristalina, P.; Pratiarso, A.; Badriyah, T.; Putro, E.D. A wireless sensor networks localization using geometric triangulation scheme for object tracking in urban search and rescue application. In Proceedings of the 2nd International Conference on Science in Information Technology (ICSITech), Balikpapan, Indonesia, 26–27 October 2016; pp. 254–259. [Google Scholar]
- Konomi, S.; Wakasa, K.; Ito, M.; Sezaki, K. User Participatory Sensing for Disaster Detection and Mitigation in Urban Environments. In Proceedings of the 4th International Conference on Distributed, Ambient and Pervasive Interactions (DAPI) Held as Part of 18th International Conference on Human-Computer Interaction (HCI International), Toronto, ON, Canada, 17–22 July 2016; pp. 459–469. [Google Scholar]
- Li, F.; Wang, H.D.; Diao, L.J.; Yen, I.L.; Bastani, F. Toward semi-automated role mapping for IoT systems in smart cities. In Proceedings of the 5th IEEE Annual International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 205–211. [Google Scholar]
- Hong, J.-H.; Shi, Y.-T. Integration of Heterogeneous Sensor Systems for Disaster Responses in Smart Cities: Flooding as an Example. ISPRS Int. Geo-Inf. 2023, 12, 279. [Google Scholar] [CrossRef]
- Saad, M.H.M.; Hamdan, N.M.; Sarker, M.R. State of the Art of Urban Smart Vertical Farming Automation System: Advanced Topologies, Issues and Recommendations. Electronics 2021, 10, 1422. [Google Scholar] [CrossRef]
- Lozano, J.M.; Tien, I. Data collection tools for post-disaster damage assessment of building and lifeline infrastructure systems. Int. J. Disaster Risk Reduct. 2023, 94, 103819. [Google Scholar] [CrossRef]
- Balota, J.E.; Kor, A.-L. Brokerage System for Integration of LrWPAN Technologies. Sensors 2022, 22, 1733. [Google Scholar] [CrossRef] [PubMed]
- Krondorf, M.; Bittner, S.; Plettemeier, D.; Knopp, A.; Wikelski, M. ICARUS—Very Low Power Satellite-Based IoT. Sensors 2022, 22, 6329. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.C.; Ng, K.W. Minimising printed circuit board assembly time using the bees algorithm with TRIZ-inspired operators. In Intelligent Production and Manufacturing Optimisation—The Bees Algorithm Approach; Pham, D.T., Hartono, N., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 25–41. [Google Scholar] [CrossRef]
Source | Number of Publications |
---|---|
Sensors | 5 |
2019 5th IEEE International Smart Cities Conference (IEEE ISC2 2019) | 2 |
Applied Sciences | 2 |
Earth Science Informatics | 2 |
IEEE Access | 2 |
Materials Today-Proceedings | 2 |
Types of Disasters | Method | Detail | Reference |
---|---|---|---|
Earthquake | Machine learning | Convolutional Neural Network | Kim et al. [38] |
Recurrent Neural Network | |||
Landslide | Time-series data analysis | Grey System Forecasting | Miao and Yuan [58] |
Floods | Machine learning | Bayesian Learning | Furquim et al. [45] |
Multi-Layer Perceptron Artificial Neural Networks | |||
Random Forest | |||
J-48 Decision Tree | |||
Random Tree | |||
Simple Cart Decision Tree | |||
BFTree | |||
Floods | Machine learning | Artificial Neural Networks | Wang and Abdelrahman [62] |
LSTM | |||
Floods | Machine learning | Random Forest | Aljohani et al. [85] |
Decision Tree | |||
KNN | |||
Floods | Machine learning | Artificial Neural Network | Mousa et al. [70] |
Floods | Machine learning | Artificial Neural Network | Goyal et al. [87] |
Floods | Deep learning | Deep Neural Network | Junior et al. [73] |
Floods | Time-series data analysis + Machine learning | BiGRU Neural Network + Attention Mechanism | Chen et al. [86] |
Floods | Time-series data analysis + Machine learning | Multilayer Perceptron artificial neural network | Furquim et al. [37] |
Floods | Time-series data analysis + Machine learning | Multilayer Perceptron artificial neural network | Furquim et al. [64] |
Floods | Time-series data analysis + machine learning | Multilayer Perceptron artificial neural network | Furquim et al. [69] |
Floods | Image processing algorithm | Garcia et al. [48] | |
Floods | Image processing algorithms | Edge Keeping Index | Liu et al. [71] |
SURF. | |||
Floods | Image processing algorithm | Color segmentation | Castro et al. [72] |
Morphological operations | |||
Shape detection | |||
Floods | Image processing algorithm | DNN Pruning Algorithm + Randomized Heuristic | Junior et al. [73] |
Floods | Mathematical modeling | Markov Process | Tyagi et al. [68] |
Laplace Transformation | |||
Floods | Data retrieval | Compare current situations with past cases | Luo et al. [84] |
Typhoon | Image processing algorithm | Attention Mechanism | Wang et al. [79] |
Fast R-CNN | |||
Transfer Learning method | |||
Tsunami | Observation | Flare marker buoys | Alhamidi et al. [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, F.; Pang, C.; Tang, H. Sensors on the Internet of Things Systems for Urban Disaster Management: A Systematic Literature Review. Sensors 2023, 23, 7475. https://doi.org/10.3390/s23177475
Zeng F, Pang C, Tang H. Sensors on the Internet of Things Systems for Urban Disaster Management: A Systematic Literature Review. Sensors. 2023; 23(17):7475. https://doi.org/10.3390/s23177475
Chicago/Turabian StyleZeng, Fan, Chuan Pang, and Huajun Tang. 2023. "Sensors on the Internet of Things Systems for Urban Disaster Management: A Systematic Literature Review" Sensors 23, no. 17: 7475. https://doi.org/10.3390/s23177475
APA StyleZeng, F., Pang, C., & Tang, H. (2023). Sensors on the Internet of Things Systems for Urban Disaster Management: A Systematic Literature Review. Sensors, 23(17), 7475. https://doi.org/10.3390/s23177475