Organic Electrochemical Transistor with MoS2 Nanosheets Modified Gate Electrode for Sensitive Glucose Sensing
Abstract
:1. Introduction
2. Experimental Details
2.1. Chemicals and Apparatus
2.2. Preparation of MoS2 Nanosheets
2.3. Preparation of OECT-Based Glucose Sensors
2.4. Measurement and Characterization
3. Results and Discussion
3.1. Characterization of MoS2 Nanosheets
3.2. OECT-Based Glucose Sensor with Nafion-GOx/Pt Gate Electrode
3.3. OECT-Based Glucose Sensor with Nafion-MoS2-GOx/Pt Gate Electrode
3.4. Selectivity of OECT-Based Glucose Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine 2014, 42, 698–702. [Google Scholar] [CrossRef]
- World Health Organization. 2020. Available online: https://www.who.int/health-topics/diabetes (accessed on 25 April 2021).
- Reddy, V.S.; Agarwal, B.; Ye, Z.; Zhang, C.Q.; Roy, K.; Chinnappan, A.; Narayan, R.J.; Ramakrishna, S.; Ghosh, R. Recent advancement in biofluid-based glucose sensors using invasive, minimally invasive, and non-invasive technologies: A review. Nanomaterials 2022, 12, 1082. [Google Scholar] [CrossRef]
- Wei, M.; Qiao, Y.X.; Zhao, H.T.; Liang, J.; Li, T.S.; Luo, Y.L.; Lu, S.Y.; Shi, X.F.; Lu, W.B.; Sun, X.P. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.J.; Baik, S.; Hyeon, T.; Kim, D.H. Enzyme-based glucose Sensor: From invasive to wearable device. Adv. Healthc. Mater. 2018, 7, 1701150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, W.J.; Ye, Z.; Zeng, J.Y.; He, Z.T.; Wang, X.; Zhu, Z.H.; Hu, R.Q.; Liu, C.; Wang, Q.Q. Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater. Today Bio. 2023, 20, 100638. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Liu, H.; Kang, W.; Lei, C.; Nie, Z.; Huang, Y.; Yao, S. Biomineralization synthesis of a near-infrared fluorescent nanoprobe for direct glucose sensing in whole blood. Nanoscale 2020, 12, 864–870. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, G.; Ji, X.; He, Z. Synthesis of bio-templated clickable quantum dots and a dual-emitting organic/inorganic complex for ratiometric fluorescence visual assay of blood glucose. J. Mater. Chem. B 2022, 10, 4473–4478. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.N.; Anderson, S.R.; Joglekar, M.V.; Hardikar, A.A.; Bansal, V.; Ramanathan, R. Bimetallic nanozyme mediated urine glucose monitoring through discriminant analysis of colorimetric signal. Biosens. Bioelectron. 2022, 212, 114386. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Hwang, J.; Jeon, H.J.; Bae, W.R.; Jeong, I.K.; Kim, T.G.; Kang, J.; Han, Y.G.; Chung, E.; Lee, D.Y. Cerium oxide nanoparticle-containing colorimetric contact lenses for noninvasively monitoring human tear glucose. ACS Appl. Nano Mater. 2021, 4, 5198–5210. [Google Scholar] [CrossRef]
- Ni, M.; Tan, M.; Pan, Y.; Zhu, C.; Du, H. Rapid preparation of self-supported nickel-iron oxide as a high-performance glucose sensing platform. J. Mater. Chem. C 2022, 10, 12883–12891. [Google Scholar] [CrossRef]
- He, C.; Asif, M.; Liu, Q.; Xiao, F.; Liu, H.; Xia, B.Y. Noble metal construction for electrochemical nonenzymatic glucose detection. Adv. Mater. Technol. 2022, 8, 2200272. [Google Scholar] [CrossRef]
- Fang, Q.; Qin, Y.; Wang, H.; Xu, W.; Yan, H.; Jiao, L.; Wei, X.; Li, J.; Luo, X.; Liu, M.; et al. Ultra-low content bismuth-anchored gold aerogels with plasmon property for enhanced nonenzymatic electrochemical glucose sensing. Anal. Chem. 2022, 94, 11030–11037. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Hong, K.; Xie, W.; Lee, K.H.; Zhang, S.; Lodge, T.P.; Frisbie, C.D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846. [Google Scholar]
- Bernards, D.A.; Malliaras, G.G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 2007, 17, 3538–3544. [Google Scholar] [CrossRef]
- Wang, N.X.; Yang, A.; Fu, Y.; Li, Y.Z.; Yan, F. Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 2019, 52, 277–287. [Google Scholar] [CrossRef]
- Paudel, P.R.; Tropp, J.; Kaphle, V.; Azoulay, J.D.; Lüssem, B. Organic electrochemical transistors—From device models to a targeted design of materials. J. Mater. Chem. C 2021, 31, 9761–9790. [Google Scholar] [CrossRef]
- Lin, P.; Yan, F.; Chan, H.L.W. Ion-sensitive properties of organic electrochemical transistors. ACS Appl. Mater. Interfaces 2010, 2, 1637–1641. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhu, R.; Tao, Y.; Chen, Y.; Liu, Q.; Liu, X.; Wang, D. Woven fiber organic electrochemical transistors based on multiwalled carbon nanotube functionalized PEDOT nanowires for nondestructive detection of potassium ions. Mater. Sci. Eng. B 2022, 278, 115657. [Google Scholar] [CrossRef]
- Parlak, O.; Keene, S.T.; Marais, A.; Curto, V.F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, 2904. [Google Scholar] [CrossRef]
- Palit, S.; Singh, K.; Lou, B.S.; Her, J.L.; Pang, S.T.; Pan, T.M. Ultrasensitive dopamine detection of indium-zinc oxide on PET flexible based extended-gate field-effect transistor. Sens. Actuators B Chem. 2020, 310, 127850. [Google Scholar] [CrossRef]
- Gu, X.; Yeung, S.Y.; Chadda, A.; Poon, E.N.Y.; Boheler, K.R.; Hsing, I.M. Organic electrochemical transistor arrays for in vitro electrophysiology monitoring of 2D and 3D cardiac tissues. Adv. Biosyst. 2019, 3, 1800248. [Google Scholar] [CrossRef] [PubMed]
- Lieberth, K.; Romele, P.; Torricelli, F.; Koutsouras, D.A.; Bruckner, M.; Mailänder, V.; Gkoupidenis, P.; Blom, P.W.M. Current-driven organic electrochemical transistors for monitoring cell layer integrity with enhanced sensitivity. Adv. Healthc. Mater. 2021, 10, 2100845. [Google Scholar] [CrossRef]
- Wang, J.; Lee, S.; Yokota, T.; Jimbo, Y.; Wang, Y.; Nayeem, M.O.G.; Nishinaka, M.; Someya, T. Nanomesh organic electrochemical transistor for comfortable on-skin electrodes with local amplifying function. ACS Appl. Electron. Mater. 2020, 2, 3601–3609. [Google Scholar] [CrossRef]
- Li, T.; Cheryl Koh, J.Y.; Moudgil, A.; Cao, H.; Wu, X.; Chen, S.; Hou, K.; Surendran, A.; Stephen, M.; Tang, C.; et al. Biocompatible ionic liquids in high-performing organic electrochemical transistors for ion detection and electrophysiological monitoring. ACS Nano 2022, 16, 12049–12060. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.N.; Song, J.J.; Liu, H.; Zhao, Z.Y.; Li, L.; Yan, F. Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart. Adv. Funct. Mater. 2023, 33, 2215037. [Google Scholar] [CrossRef]
- Heller, A. Implanted electrochemical glucose sensors for the management of diabetes. Annu. Rev. Biomed. Eng. 1999, 1, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Macaya, D.J.; Nikolou, M.; Takamatsu, S.; Mabeck, J.T.; Owens, R.M.; Malliaras, G.G. Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors. Sens. Actuators B Chem. 2007, 123, 374–378. [Google Scholar] [CrossRef]
- Liao, J.; Lin, S.; Yang, Y.; Liu, K.; Du, W. Highly selective and sensitive glucose sensors based on organic electrochemical transistors using TiO2 nanotube arrays-based gate electrodes. Sens. Actuators B Chem. 2015, 208, 457–463. [Google Scholar] [CrossRef]
- Diacci, C.; Lee, J.W.; Dufil, P.G.; Méhes, G.; Berggren, M.; Simon, D.T.; Stavrinidou, E. Real-time monitoring of glucose export from isolated chloroplasts using an organic electrochemical transistor. Adv. Mater. Technol. 2019, 5, 1900262. [Google Scholar] [CrossRef]
- Tang, H.; Yan, F.; Lin, P.; Xu, J.; Chan, H.L.W. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Funct. Mater. 2011, 21, 2264–2272. [Google Scholar] [CrossRef]
- Liao, C.Z.; Zhang, M.; Niu, L.Y.; Zheng, Z.J.; Feng, Y. Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B 2013, 1, 3820–3829. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.Z.; Fan, H.; Zhang, L.R.; He, S.H.; Zhu, C.C.; Gao, K. A laser-induced graphene-based flexible and all-carbon organic electrochemical transistor. J. Mater. Chem. C 2023, 11, 4916–4928. [Google Scholar] [CrossRef]
- Dalila, R.N.; Md Arshad, M.K.; Gopinath, S.C.B.; Norhaimi, W.M.W.; Fathil, M.F.M. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions. Biosens. Bioelectron. 2019, 132, 248–264. [Google Scholar] [CrossRef]
- Barua, S.; Dutta, H.S.; Gogoi, S.; Devi, R.; Khan, R. Nanostructured MoS2-based advanced biosensors: A review. ACS Appl. Nano Mater. 2018, 1, 2–25. [Google Scholar] [CrossRef]
- Raghu, M.S.; Kumar, K.Y.; Rao, S.; Aravinda, T.; Prasanna, B.P.; Prashanth, M.K. Fabrication of polyaniline—Few-layer MoS2 nanocomposite for high energy density supercapacitors. Polym. Bull. 2018, 75, 4359–4375. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X.W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813. [Google Scholar] [CrossRef]
- Wang, T.Y.; Zhu, H.C.; Zhuo, J.Q.; Zhu, Z.W.; Papakonstantinou, P.; Lubarsky, G.; Lin, J.; Li, M.X. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 2013, 85, 10289–10295. [Google Scholar] [CrossRef]
- Kukkar, M.; Tuteja, S.K.; Sharma, A.L.; Kumar, V.; Paul, A.K.; Kim, K.-H.; Sabherwal, P.; Deep, A. A new electrolytic synthesis method for few-layered MoS2 nanosheets and their robust biointerfacing with reduced antibodies. ACS Appl. Mater. Inter. 2016, 8, 16555–16563. [Google Scholar] [CrossRef]
- Mia, A.K.; Meyyappan, M.; Giri, P.K. Two-dimensional transition metal dichalcogenide based biosensors: From fundamentals to healthcare applications. Biosensor 2023, 13, 169. [Google Scholar] [CrossRef]
- Bernards, D.A.; MacAya, D.J.; Nikolou, M.; Defranco, J.A.; Takamatsu, S.; Malliaras, G.G. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 2008, 18, 116–120. [Google Scholar] [CrossRef]
- Hu, J.; Wei, W.; Ke, S.; Zeng, X.; Lin, P. A novel and sensitive sarcosine biosensor based on organic electrochemical transistor. Electrochim. Acta 2019, 307, 100–106. [Google Scholar]
- Nasu, Y.; Murphy-Royal, C.; Wen, Y.; Haidey, J.N.; Molina, R.S.; Aggarwal, A.; Zhang, S.; Kamijo, Y.; Paquet, M.-E.; Podgorski, K.; et al. A genetically encoded fluorescent biosensor for extracellular L-lactate. Nat. Commun. 2021, 12, 7058. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Gate Electrode | Stripping Solvent | Detection Limit (µM) | α (mV/Decade) |
---|---|---|---|
Nafion (1.5%)-GOx/Pt | Nil | 5 | 39.82 |
Nafion (1.5%)-MoS2-GOx/Pt | NMP solution | 0.5 | 47.58 |
Nafion (1.5%)-MoS2-GOx/Pt | Sodium cholate solution | 0.5 | 48.09 |
Nafion (1.5%)-MoS2-GOx/Pt | Aqueous alcohol | 0.25 | 53.37 |
Gate Electrode | Detection Limit (nM) | α (mV/Decade) |
---|---|---|
Nafion (0.5%)-MoS2-GOx/Pt | 500 | 43.20 |
Nafion (1%)-MoS2-GOx/Pt | 100 | 50.37 |
Nafion (1.5%)-MoS2-GOx/Pt | 250 | 45.92 |
Nafion (2%)-MoS2-GOx/Pt | 750 | 33.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Dai, J.; Huang, C.; Zeng, X.; Wei, W.; Wang, Z.; Lin, P. Organic Electrochemical Transistor with MoS2 Nanosheets Modified Gate Electrode for Sensitive Glucose Sensing. Sensors 2023, 23, 7449. https://doi.org/10.3390/s23177449
Hu J, Dai J, Huang C, Zeng X, Wei W, Wang Z, Lin P. Organic Electrochemical Transistor with MoS2 Nanosheets Modified Gate Electrode for Sensitive Glucose Sensing. Sensors. 2023; 23(17):7449. https://doi.org/10.3390/s23177449
Chicago/Turabian StyleHu, Jin, Jiajia Dai, Caiping Huang, Xierong Zeng, Weiwei Wei, Zhezhe Wang, and Peng Lin. 2023. "Organic Electrochemical Transistor with MoS2 Nanosheets Modified Gate Electrode for Sensitive Glucose Sensing" Sensors 23, no. 17: 7449. https://doi.org/10.3390/s23177449
APA StyleHu, J., Dai, J., Huang, C., Zeng, X., Wei, W., Wang, Z., & Lin, P. (2023). Organic Electrochemical Transistor with MoS2 Nanosheets Modified Gate Electrode for Sensitive Glucose Sensing. Sensors, 23(17), 7449. https://doi.org/10.3390/s23177449