Optofluidic Sensor Based on Polymer Optical Microresonators for the Specific, Sensitive and Fast Detection of Chemical and Biochemical Species
Abstract
:1. Introduction
1.1. Presentation and State-of-the Art
1.2. Detection Schemes in Evanescent Wave Microring Sensors
1.3. Interest of Vertical Coupling in Microring Sensors
2. Materials and Methods
2.1. Molecules and Materials–Functionalization
2.2. Microresonator Fabrication
2.3. Optofluidic Cell: Fabrication and Operation
2.4. Optical Experimental Set-up
2.5. Data Processing
2.5.1. Correction from Temperature Drift
2.5.2. Determination of the Resonance Wavelength Shift
3. Results
3.1. Characterization of the Microresonators
3.2. DNA Functionalization and Recognition on a SU-8 Planar Surface: AFM Studies
3.3. DNA-Probe Functionalization and Recognition on a SU-8 Planar Surface: Spectral Response of the Sensor
3.4. Construction of a Calibration Curve
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pelt-Verkuil, E.; Belkum, A.; Hays, J.P. Principles and Technical Aspects of PCR Amplification; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020, 92, 1518–1524. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Pieralli, C.; Attoui, C.; Boireau, W.; Wacogne, B. Low cost optical detection of DNA hybridization on biochip. Laser Phys. 2009, 19, 259–264. [Google Scholar] [CrossRef]
- Bujalowski, W.M. (Ed.) Spectroscopic Methods of Analysis: Methods and Protocols, Methods in Molecular Biology; Springer Science+Business Media: New York, NY, USA, 2012; Volume 875. [Google Scholar]
- Okahata, Y.; Matsunobu, Y.; Ijiro, K.; Mukae, M.; Murakami, A.; Makino, K. Hybridization of nucleic acids immobilized on a quartz crystal microbalance. J. Am. Chem. Soc. 1992, 114, 8299–8300. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, Y.; Ye, J.-X.; Lei, Y.; Liu, A.-L. Facile Label-Free Electrochemical DNA Biosensor for Detection of Osteosarcoma-Related Survivin Gene. Biosensors 2022, 12, 747. [Google Scholar] [CrossRef]
- Wang, J. Towards Genoelectronics: Electrochemical Biosensing of DNA Hybridization. Chem. Eur. J. 1999, 5, 1681–1685. [Google Scholar] [CrossRef]
- Wang, R.; Tombelli, S.; Minunni, M.; Spiriti, M.M.; Mascini, M. Immobilization of DNA probes for the development of SPR-based sensing. Biosens. Bioelectron. 2004, 20, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I.A. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol. 2021, 4, 70. [Google Scholar] [CrossRef]
- Nair, R.V.; Vijaya, R. Photonic crystal sensors: An overview. Prog. Quantum Electron. 2010, 34, 89–134. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.-N.; Zhou, Y.; Zheng, W.; Sun, Y.; Ma, G.; Zhao, Y. Optical Fiber Optofluidic Bio-Chemical Sensors: A Review. Laser Photonics Rev. 2021, 15, 2000526. [Google Scholar] [CrossRef]
- Berneschi, S.; Nunzi Conti, G.; Pelli, S.; Soria, S. Microresonators for Sensing Applications. In Series in Optics and Photonics: An Introduction to Optoelectronic Sensors; World Scientific: Singapore, 2009; pp. 126–145. [Google Scholar] [CrossRef]
- Subramanian, S.; Wu, H.-Y.; Constant, T.; Xavier, J.; Vollmer, F. Label-Free Optical Single-Molecule Micro- and Nanosensors. Adv. Mater. 2018, 30, 1801246. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, R.; Lapin, Z.J.; Nichols, A.S.; Braun, R.M. Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: State-of-the-art and future outlooks. Opt. Eng. 2019, 58, 020901. [Google Scholar] [CrossRef]
- Chan, C.-F.; Chen, C.; Jafari, A.; Laronche, A.; Thomson, D.J.; Albert, J. Optical fiber refractometer using narrowband cladding-mode resonance shifts. Appl. Opt. 2007, 46, 1142–1149. [Google Scholar] [CrossRef]
- Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Meth. 2008, 5, 591–596. [Google Scholar] [CrossRef]
- Schweinsberg, A.; Hocdé, S.; Lepeshkin, N.N.; Boyd, R.W. An environmental sensor based on an integrated optical whispering gallery mode disk resonator. Sens. Actuator B-Chem. 2007, 123, 727–732. [Google Scholar] [CrossRef]
- Zhang, S.; Wan, H.; Xiong, J.; Wan, C.; Lu, Y.; Ang, L.; Lv, P. A high hollow-core micro-bottle cavity biosensors for DNA detection with low detection limit. J. Light. Technol. 2022, 40, 5345–5351. [Google Scholar] [CrossRef]
- Suter, J.D.; White, I.M.; Zhu, H.; Shi, H.; Caldwell, C.W.; Fan, X. Label-free quantitative DNA detection using the liquid core optical ring resonator. Biosens. Bioelectron. 2008, 23, 1003–1009. [Google Scholar] [CrossRef]
- Hunt, H.K.; Soteropulos, C.; Armani, A.M. Bioconjugation strategies for microtoroidal optical resonators. Sensors 2010, 10, 9317–9336. [Google Scholar] [CrossRef]
- Iqbal, M.; Gleeson, M.A.; Spaugh, B.; Tybor, F.; Gunn, W.G.; Hochberg, M.; Baehr-Jones, T.; Bailey, R.C.; Gunn, L.C. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 654–661. [Google Scholar] [CrossRef]
- Chakravarty, S.; Zou, Y.; Lai, W.C.; Chen, R.T. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon. Biosens. Bioelectron. 2012, 38, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Bergstein, D.A.; Ozkumur, E.; Wu, A.C.; Yalçin, A.; Colson, J.R.; Needham, J.W.; Irani, R.J.; Gershon, J.M.; Goldberg, B.B.; Delisi, C.; et al. Resonant cavity imaging: A means toward high-throughput label-free protein detection. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 131–139. [Google Scholar] [CrossRef]
- Fernández Gavela, A.; Grajales García, D.; Ramirez, J.C.; Lechuga, L.M. Last Advances in Silicon-Based Optical Biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef]
- Zinoviev, K.; Carrascosa, L.G.; Sánchez del Río, J.; Sepúlveda, B.; Domínguez, C.; Lechuga, L.M. Silicon photonic biosensors for lab-on-a-chip applications. Adv. Opt. Technol. 2008, 2008, 383927. [Google Scholar] [CrossRef]
- Schmitt, K.; Schirmer, B.; Hoffmann, C.; Brandenburg, A.; Meyrueis, P. Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Biosens. Bioelectron. 2007, 22, 2591–2597. [Google Scholar] [CrossRef] [PubMed]
- Zinoviev, K.E.; González-Guerrero Domínguez, C.; Lechuga, L.M. Integrated bimodal waveguide interferometric biosensor for label-free analysis. J. Light. Technol. 2011, 29, 1926–1930. [Google Scholar] [CrossRef]
- Hanumegowda, N.M.; Stica, C.J.; Patel, B.C.; White, I.; Fan, X. Refractometric sensors based on microsphere resonators. Appl. Phys. Lett. 2005, 87, 201107. [Google Scholar] [CrossRef]
- Li, H.; Fan, X. Characterization of sensing capability of optofluidic ring resonator biosensors. Appl. Phys. Lett. 2010, 97, 011105. [Google Scholar] [CrossRef]
- Cunningham, B.; Li, P.; Lin, B.; Pepper, J. Colorimetric resonant reflection as a direct biochemical assay technique. Sens. Actuators B Chem. 2002, 81, 316–328. [Google Scholar] [CrossRef]
- Chao, C.-Y.; Fung, W.; Guo, L.J. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 134–142. [Google Scholar] [CrossRef]
- Delezoide, C.; Salsac, M.; Lautru, J.; Leh, H.; Nogues, C.; Zyss, J.; Buckle, M.; Ledoux-Rak, I.; Nguyen, C.T. Vertically coupled polymer micro-racetrack resonators for label-free biochemical sensors. IEEE Photon. Technol. Lett. 2012, 24, 270–272. [Google Scholar] [CrossRef]
- Tu, X.; Chen, S.-L.; Song, C.; Huang, T.; Guo, L.J. Ultrahigh Q Polymer Microring Resonators for Biosensing Applications. IEEE Phot. J. 2019, 11, 4200110. [Google Scholar] [CrossRef]
- Little, B.E.; Chu, S.T.; Pan, W.; Ripin, D.; Kaneko, T.; Kokubun, Y.; Ippen, E. Vertically coupled glass microring resonator channel dropping filters. IEEE Photonics Technol. Lett. 1999, 11, 215–217. [Google Scholar] [CrossRef]
- Chao, C.-Y. Polymer Microring Resonators and Its Applications as Biosensors. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2005. [Google Scholar]
- Delezoide, C.; Lautru, J.; Zyss, J.; Ledoux-Rak, I.; Nguyen, C.T. Vertically coupled polymer microresonators for optofluidic label-free biosensors. In Proceedings of the Integrated Optics: Devices, Materials and Technologies XVI, San Francisco, CA, USA, 21–26 January 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8264, p. 826416. [Google Scholar]
- Shaw, J.M.; Gelorme, J.D.; LaBIanca, N.C.; Conley, W.E.; Holmes, S.J. Negative photoresists for optical lithography. IBM J. Res. Develop. 1997, 41, 81–94. [Google Scholar] [CrossRef]
- McKean, D.R.; Schaedeli, U.P.; Kasai, P.H.; MacDonald, S.A. The Effect of Polymer Structure on the Efficiency of Acid Generation from Triarylsulfonium Salts. J. Polym. Sci. Part A Polym. Chem. 1991, 29, 309–3113. [Google Scholar] [CrossRef]
- Chauvin, D.; Bell, J.; Leray, I.; Ledoux-Rak, I.; Nguyen, C.T. Label-free optofluidic sensor based on polymeric microresonator for the detection of cadmium in tap water. Sens. Actuators B Chem. 2019, 280, 77–85. [Google Scholar] [CrossRef]
- Ahmad, L.; Salmon, L.; Korri-Youssoufi, H. Electrochemical detection of the human cancer biomarker ‘autocrine motility factor-phosphoglucose isomerase’ based on a biosensor formed with a monosaccharidic inhibitor. Sens. Actuators B Chem. 2019, 299, 126933. [Google Scholar] [CrossRef]
- Megalathan, A.; Wijesinghe, K.M.; Dhakal, S. Single-molecule FRET-Based Dynamic DNA Sensor. ACS Sens. 2021, 6, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
Sensor Type | Q | Surface Detection Limit (pg/mm2) | RIU Detection Limit | Material | Target Molecule | Ref. |
---|---|---|---|---|---|---|
Mach-Zehnder | N.A. | 0.06 | 1 × 10−7 | Si3N4 | DNA | [26] |
Young interferometer | N.A. | 0.013 | 9 × 10−9 | Ta2O5 | IgG | [27] |
Slit waveguide | N.A. | 0.05 | 2.5 × 10−7 | Si3N4 | BSA | [28] |
Microsphere | 5 × 106 | 6 | 3 × 10−7 | Glass | DNA | [29] |
LCORR | 106 | 4.0 | 8.8 × 10−6 | Silica | DNA | [20] |
Microring | 6 × 105 | 1.6 | 2.8 × 10−7 | SOI | DNA | [30] |
Photonic crystal | N.A | 0.42 | 3.4 × 10−5 | Si3N4 | Antibiotin IgG | [31] |
Microring | 2 × 104 | 250 | ~10−7 | Polystyrene | Streptavidin | [32] |
Microring | 3.5 × 104 | 5 × 10−5 | 5 × 10−5 | SU-8 | 5-TAMRA Cadaverin | [33] |
Microring | 6 × 105 | 12.7 | ~10−5 | SU-8 | BSA (Bovine Serum albumin) | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keriel, N.-A.; Delezoide, C.; Chauvin, D.; Korri-Youssoufi, H.; Lai, N.D.; Ledoux-Rak, I.; Nguyen, C.-T. Optofluidic Sensor Based on Polymer Optical Microresonators for the Specific, Sensitive and Fast Detection of Chemical and Biochemical Species. Sensors 2023, 23, 7373. https://doi.org/10.3390/s23177373
Keriel N-A, Delezoide C, Chauvin D, Korri-Youssoufi H, Lai ND, Ledoux-Rak I, Nguyen C-T. Optofluidic Sensor Based on Polymer Optical Microresonators for the Specific, Sensitive and Fast Detection of Chemical and Biochemical Species. Sensors. 2023; 23(17):7373. https://doi.org/10.3390/s23177373
Chicago/Turabian StyleKeriel, Nolwenn-Amandine, Camille Delezoide, David Chauvin, Hafsa Korri-Youssoufi, Ngoc Diep Lai, Isabelle Ledoux-Rak, and Chi-Thanh Nguyen. 2023. "Optofluidic Sensor Based on Polymer Optical Microresonators for the Specific, Sensitive and Fast Detection of Chemical and Biochemical Species" Sensors 23, no. 17: 7373. https://doi.org/10.3390/s23177373
APA StyleKeriel, N.-A., Delezoide, C., Chauvin, D., Korri-Youssoufi, H., Lai, N. D., Ledoux-Rak, I., & Nguyen, C.-T. (2023). Optofluidic Sensor Based on Polymer Optical Microresonators for the Specific, Sensitive and Fast Detection of Chemical and Biochemical Species. Sensors, 23(17), 7373. https://doi.org/10.3390/s23177373