Lightweight Network DCR-YOLO for Surface Defect Detection on Printed Circuit Boards
Abstract
:1. Introduction
2. Approach to the Overall Design of the DCR-YOLO Network Model
2.1. Design of the DCR-Backbone Structure
2.2. Design of the PCR Structure
2.3. Design of the SDDT-FPN Structure
2.4. Design of the C5ECA Structure
3. Experimental Basis and Procedure
3.1. Data Set for the Experiment
3.2. Evaluation Criteria
3.3. Experimental Platform and Parameters
3.4. Model Training Process and Results
3.5. Ablation Experiments with Different Modules
3.6. Comparative Experiments with Different Models
4. Visualization of Results Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, P.C.; Chen, L.Y.; Fan, C.Y. A case-based evolutionary model for defect classifification of printed circuit board images. J. Intell. Manuf. 2008, 19, 203–214. [Google Scholar] [CrossRef]
- Geczy, A.; Fejos, M.; Tersztyanszky, L.; Kemler, A.; Szabo, A. Investigating printed circuit board shrinkage during reflow soldering. In Proceedings of the 37th International Spring Seminar on Electronics Technology 2014, Dresden, Germany, 7–11 May 2014; pp. 219–224. [Google Scholar] [CrossRef]
- Abd Al Rahman, M.; Mousavi, A. A review and analysis of automatic optical inspection and quality monitoring methods in electronics industry. IEEE Access 2020, 8, 183192–183271. [Google Scholar]
- Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [Google Scholar] [CrossRef]
- Ren, R.; Hung, T.; Tan, K.C. A generic deep-learning-based approach for automated surface inspection. IEEE Trans. Cybern. 2017, 48, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Dave, N.; Tambade, V.; Pandhare, B.; Saurav, S. PCB defect detection using image processing and embedded system. Int. Res. J. Eng. Technol. 2016, 3, 1897–1901. [Google Scholar]
- Guo, F.; Guan, S.-A. Research of the Machine Vision Based PCB Defect Inspection System. In Proceedings of the International Conference on Intelligence Science and Information Engineering, Washington, DC, USA, 20–21 August 2011; pp. 472–475. [Google Scholar]
- Baldi, P. Autoencoders, Unsupervised Learning, and Deep Architectures; Guyon, I., Dror, G., Lemaire, V., Taylor, G., Silver, D., Eds.; PMLR: Bellevue, WA, USA, 2012; pp. 37–49. [Google Scholar]
- Chattopadhyay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks. arXiv 2018, arXiv:1710.11063. [Google Scholar]
- Scherer, D.; Müller, A.; Behnke, S. Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In Proceedings of the International Conference on Artifificial Neural Networks, Thessaloniki, Greece, 15–18 September 2010; pp. 92–101. [Google Scholar]
- Kim, J.; Ko, J.; Choi, H.; Kim, H. Printed Circuit Board Defect Detection Using Deep Learning via A Skip-Connected Convolutional Autoencoder. Sensors 2021, 21, 4968. [Google Scholar] [CrossRef]
- Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; Hengel, A.V.D. Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Turchenko, V.; Chalmers, E.; Luczak, A. A Deep convolutional auto-encoder with pooling—Unpooling layers in caffe. Int. J. Comput. 2019, 18, 8–31. [Google Scholar] [CrossRef]
- Choi, Y.; El-Khamy, M.; Lee, J. Variable Rate Deep Image Compression with a Conditional Autoencoder. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Lalak, M.; Wierzbicki, D. Automated Detection of Atypical Aviation Obstacles from UAV Images Using a YOLO Algorithm. Sensors 2022, 22, 6611. [Google Scholar] [CrossRef]
- Huang, R.; Gu, J.; Sun, X.; Hou, Y.; Uddin, S. A rapid recognition method for electronic components based on the improved YOLO-V3 network. Electronics 2019, 8, 825. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J. YOLOv4 with Deformable-Embedding-Transformer Feature Extractor for Exact Object Detection in Aerial Imagery. Sensors 2023, 23, 2522. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Lv, S.; Li, D.; Luo, Y.; Zhu, Z.; Jiang, C. YOLOv4-MN3 for PCB Surface Defect Detection. Appl. Sci. 2021, 11, 11701. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.; Li, Z.; Liu, Y.; Zhan, B. Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction. Sensors 2023, 23, 1822. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Cavazza, M.; Matsuo, Y.; Prendinger, H. Detecting Human Actions in Drone Images Using YoloV5 and Stochastic Gradient Boosting. Sensors 2022, 22, 7020. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, F.; Gu, J.; Deng, L. SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode. Sensors 2022, 22, 5817. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Feng, W.; Lei, Q.; Gui, G.; Li, X.; Deng, Z.; Wang, W. Defect Detection of Printed Circuit Boards Using EffificientDet. In Proceedings of the 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 9–11 July 2021; pp. 287–293. [Google Scholar]
- Lai, H.; Chen, L.; Liu, W.; Yan, Z.; Ye, S. STC-YOLO: Small Object Detection Network for Traffic Signs in Complex Environments. Sensors 2023, 23, 5307. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.; Sirlantzis, K.; Howells, G.; Hoque, S. Optimisation of Deep Learning Small-Object Detectors with Novel Explainable Verification. Sensors 2022, 22, 5596. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.; Zhang, Y.; Liu, Y.; Cheng, T. Lightweight Object Detection Algorithm for UAV Aerial Imagery. Sensors 2023, 23, 5786. [Google Scholar] [CrossRef]
- Betti, A.; Tucci, M. YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Detection in Aerial Imagery. Sensors 2023, 23, 1865. [Google Scholar] [CrossRef]
- Zagoruyko, S.; Komodakis, N. Wide Residual Networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Luo, Q.; Jiang, W.; Su, J.; Ai, J.; Yang, C. Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips. Sensors 2021, 21, 7264. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, S.; Kim, I.; Cheon, Y.; Cho, M.; Han, W.-S. Contrastive Regularization for Semi-Supervised Learning. arXiv 2022, arXiv:2201.06247. [Google Scholar]
- Tan, M.; Le, Q.V. EffificientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Neogi, N.; Mohanta, D.K.; Dutta, P.K. Defect detection of steel surfaces with global adaptive percentile thresholding of gradient image. J. Inst. Eng. 2017, 98, 557–565. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, L.; Yuan, Y.; Jie, Y. Research Status and Prospect of Machine Vision Based Current Status and Prospect of PCB Defect Detection Algorithm Based on Machine Vision. J. Instrum. 2022, 43, 1–17. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Bucolo, M.; Buscarino, A.; Famoso, C.; Fortuna, L.; Frasca, M.; Cucuccio, A.; Rasconá, G.; Vinci, G. Model Identification to validate Printed Circuit Boards for power applications: A new technique. IEEE Access 2022, 10, 31760–31774. [Google Scholar] [CrossRef]
Parameters | Numerical Values |
---|---|
Original image size | 604 × 604 |
Training size | 416 × 416 |
Initial learning rate | 0.01 |
Batch size | 4 |
Optimizer type | SGD Optimizer |
Number | DCR-3Head | SDDT-FPN | P3-PCR | P4-PCR | P5-PCR | 1-C5ECA | 2-C5ECA | 3-C5ECA | Map/% | R/% | FPS |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | √ | 96.76 | 95.38 | 123.47 | |||||||
2 | √ | √ | 97.26 | 96.75 | 117.08 | ||||||
3 | √ | √ | √ | 98.00 | 96.76 | 112.55 | |||||
4 | √ | √ | √ | 97.54 | 96.80 | 112.74 | |||||
5 | √ | √ | √ | 97.87 | 96.67 | 113.46 | |||||
6 | √ | √ | √ | √ | √ | 98.16 | 97.35 | 105.17 | |||
7 | √ | √ | √ | √ | √ | 98.47 | 97.13 | 106.00 | |||
8 | √ | √ | √ | √ | √ | 98.58 | 97.24 | 103.15 | |||
9 | √ | √ | √ | √ | √ | √ | 97.83 | 96.30 | 102.66 |
Model Name | Map/% | R/% | Model Volume/MB | FPS |
---|---|---|---|---|
YOLOv3 | 88.44 | 66.33 | 61.55 | 39.35 |
YOLOv4 | 97.14 | 91.87 | 63.96 | 31.36 |
YOLOv4-tiny | 89.63 | 79.95 | 5.89 | 170.43 |
YOLOv5-s | 94.34 | 72.19 | 7.08 | 72.69 |
YOLOv5-m | 95.89 | 79.86 | 21.07 | 38.98 |
DCR-YOLO | 98.58 | 97.24 | 7.73 | 103.15 |
YOLOv7-tiny | 95.32 | 80.33 | 6.03 | 98.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Cai, M.; Zhang, D. Lightweight Network DCR-YOLO for Surface Defect Detection on Printed Circuit Boards. Sensors 2023, 23, 7310. https://doi.org/10.3390/s23177310
Jiang Y, Cai M, Zhang D. Lightweight Network DCR-YOLO for Surface Defect Detection on Printed Circuit Boards. Sensors. 2023; 23(17):7310. https://doi.org/10.3390/s23177310
Chicago/Turabian StyleJiang, Yuanyuan, Mengnan Cai, and Dong Zhang. 2023. "Lightweight Network DCR-YOLO for Surface Defect Detection on Printed Circuit Boards" Sensors 23, no. 17: 7310. https://doi.org/10.3390/s23177310
APA StyleJiang, Y., Cai, M., & Zhang, D. (2023). Lightweight Network DCR-YOLO for Surface Defect Detection on Printed Circuit Boards. Sensors, 23(17), 7310. https://doi.org/10.3390/s23177310