Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs
Abstract
:1. Introduction
- 1.
- Given the unique characteristics of coal photomicrographs, which set them apart from traditional images, we have specifically designed a lightweight generative adversarial network to enhance the resolution of these photomicrographs. Experimental results indicate that the proposed method surpasses state-of-the-art GAN-based methods.
- 2.
- We propose a novel residual block called the Wide Residual Block (WRB), designed to enhance the neural network’s non-linear fitting ability and feature extraction capabilities while minimizing computational load. By integrating WRBs into the network architecture, the modified network is able to produce smoother and more continuous restoration effects without introducing artifacts, outperforming networks utilizing traditional residual blocks.
- 3.
- We utilize a pyramid attention block that can be seamlessly integrated into existing super-resolution networks. This block significantly improves the performance of super-resolution models by enhancing their capability to capture important feature relationships across multiple scales. The related codes and dataset are publicly available at the following website: https://github.com/Jackson-LIMU/SR-IGAN (accessed on 30 January 2023).
2. Network Architecture
2.1. The Overall Structure of the Proposed Method
2.2. WRB Block
2.3. Pyramid Attention Module
2.4. Loss Function
3. Experimental Setup
3.1. Experiment Details
3.2. Evaluation Indices
4. Experiment Results
4.1. Qualitative Results
4.2. Quantitative Results
4.3. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, M.; Rao, Z.; Wang, H.; Chen, Y.; Zou, L.; Yu, H. Maceral groups analysis of coal based on semantic segmentation of photomicrographs via the improved U-net. Fuel 2021, 294, 120475. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Wang, S.; Schobert, H.H. Clean coal geology in China: Research advance and its future. Int. J. Coal Sci. Technol. 2020, 7, 299–310. [Google Scholar] [CrossRef]
- Ahmad, M.; Zafar, M.; Yousaf, Z.; Ullah, S.A.; Sultana, S.; Bibi, F. Identification of novel, non-edible oil seeds via scanning electron microscopy as potential feedstock for green synthesis of biodiesel. Microsc. Res. Tech. 2022, 85, 708–720. [Google Scholar]
- Mlynarczuk, M.; Skiba, M. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal. Comput. Geosci. 2017, 103, 133–141. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, X.; Wu, L.; Zhang, Y.; Qu, S. Identification of maceral groups in Chinese bituminous coals based on semantic segmentation models. Fuel 2022, 308, 121844. [Google Scholar] [CrossRef]
- Fan, J.; Du, M.; Liu, L.; Li, G.; Wang, D.; Liu, S. Macerals particle characteristics analysis of tar-rich coal in northern Shaanxi based on image segmentation models via the U-Net variants and image feature extraction. Fuel 2023, 341, 127757. [Google Scholar] [CrossRef]
- Freedman, G.; Fattal, R. Image and video upscaling from local self-examples. ACM Trans. Graph. 2011, 30, 1–11. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef]
- Zou, L.; Huang, Z.; Yu, X.; Zheng, J.; Liu, A.; Lei, M. Automatic Detection of Congestive Heart Failure Based on Multiscale Residual UNet++: From Centralized Learning to Federated Learning. IEEE Trans. Instrum. Meas. 2023, 72, 4001013. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Chen, S.; Lv, Z.; Huang, J.; Chang, Z.; Catani, F. Slope stability prediction based on a long short-term memory neural network: Comparisons with convolutional neural networks, support vector machines and random forest models. Int. J. Coal Sci. Technol. 2023, 10, 18. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Qiu, D.; Cheng, Y.; Wang, X. Progressive Feedback Residual Attention Network for Cardiac Magnetic Resonance Imaging Super-Resolution. IEEE J. Biomed. Health Inform. 2023, 27, 3478–3488. [Google Scholar] [CrossRef]
- Passarella, L.S.; Mahajan, S.; Pal, A.; Norman, M.R. Reconstructing High Resolution ESM data through a novel Fast Super Resolution Convolutional Neural Network (FSRCNN). Geophys. Res. Lett. 2022, 49, e2021GL097571. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Ghosh, A.; Kulharia, V.; Namboodiri, V.P.; Chandrasekaran, B. Multi-agent diverse generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8513–8521. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Shang, T.; Dai, Q.; Zhu, S.; Yang, T.; Guo, Y. Perceptual extreme super-resolution network with receptive field block. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 440–441. [Google Scholar]
- Li, H.; Yang, Y.; Chang, M.; Chen, S.; Feng, H.; Xu, Z.; Li, Q.; Chen, Y. Srdiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing 2022, 479, 47–59. [Google Scholar] [CrossRef]
- Huang, P.; Liu, Y.; Fu, C.; Zhao, L. Multi-Semantic Fusion Generative Adversarial Network for Text-to-Image Generation. In Proceedings of the 2023 IEEE 8th International Conference on Big Data Analytics (ICBDA), Harbin, China, 3–5 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 159–164. [Google Scholar]
- Lei, M.; Zhou, Y.; Zhou, L.; Zheng, J.; Li, M.; Zou, L. Noise-robust wagon text extraction based on defect-restore generative adversarial network. IEEE Access 2019, 7, 168236–168246. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; JMLR Workshop and Conference Proceedings. pp. 315–323. [Google Scholar]
- Huang, C.; Nien, H.H. Multi chaotic systems based pixel shuffle for image encryption. Opt. Commun. 2009, 282, 2123–2127. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Z.; Ren, Q.; Xu, Y.; Yu, Y. A novel multi-focus image fusion by combining simplified very deep convolutional networks and patch-based sequential reconstruction strategy. Appl. Soft Comput. 2020, 91, 106253. [Google Scholar] [CrossRef]
- Liang, G.; Zheng, L. A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Comput. Methods Programs Biomed. 2020, 187, 104964. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; PMLR. pp. 448–456. [Google Scholar]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. In Proceedings of the 29th British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; pp. 1–13. [Google Scholar]
- Mei, Y.; Fan, Y.; Zhang, Y.; Yu, J.; Zhou, Y.; Liu, D.; Fu, Y.; Huang, T.S.; Shi, H. Pyramid attention networks for image restoration. arXiv 2020, arXiv:2004.13824. [Google Scholar] [CrossRef]
- Ghodrati, V.; Shao, J.; Bydder, M.; Zhou, Z.; Yin, W.; Nguyen, K.L.; Yang, Y.; Hu, P. MR image reconstruction using deep learning: Evaluation of network structure and loss functions. Quant. Imaging Med. Surg. 2019, 9, 1516. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Zhai, G.; Min, X. Perceptual image quality assessment: A survey. Sci. China Inf. Sci. 2020, 63, 1–52. [Google Scholar] [CrossRef]
- Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, L. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction. Opt. Lasers Eng. 2020, 130, 106090. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
Layer | Kernel Size |
---|---|
Conv-first | 9 × 9 × 64, padding 4 |
WRB-pre (×4) | 3 × 3 × 64, 7 × 7 × 64, 3 × 3 × 64, 7 × 7 × 64 |
PA | / |
WRB-post (×4) | 3 × 3 × 64, 7 × 7 × 64, 3 × 3 × 64, 7 × 7 × 64 |
UpsampleBLock1 | 3 × 3 × 256 |
UpsampleBLock2 | 3 × 3 × 1024 |
Conv-last | 9 × 9 × 3, padding 4 |
Layer | Kernel Size and Stride |
---|---|
Convolution-1 | 3 × 3 × 64 |
Convolution-2 | 3 × 3 × 64, stride 2 |
Convolution-3 | 3 × 3 × 128 |
Convolution-4 | 3 × 3 × 128, stride 2 |
Convolution-5 | 3 × 3 × 256 |
Convolution-6 | 3 × 3 × 256, stride 2 |
Convolution-7 | 3 × 3 × 512 |
Convolution-8 | 3 × 3 × 512, stride 2 |
GAP | / |
Convolution-9 | 1 × 1 × 1024 |
Convolution-10 | 1 × 1 × 1 |
Input Sizes | PSNR (dB) | SSIM |
---|---|---|
64 × 64 | 30.4171 | 0.9074 |
128 × 128 | 31.0275 | 0.9023 |
256 × 256 | 31.1210 | 0.9055 |
512 × 512 | 32.0591 | 0.8810 |
Methods | PSNR (dB) | SSIM | Parameters | Inference Time for Each Image(s) |
---|---|---|---|---|
Bicubic [33] | 29.1734 | 0.8254 | None | 0.071 |
SRCNN [8] | 29.8132 | 0.8796 | 69,251 | 0.089 |
EDSR [34] | 30.4251 | 0.8901 | 925,080 | 0.084 |
SRGAN [14] | 29.9607 | 0.8897 | 734,219 | 0.104 |
ESRGAN [16] | 30.2009 | 0.8986 | 3,028,931 | 0.090 |
RFB-ESRGAN [17] | 30.4116 | 0.8910 | 12,590,999 | 0.148 |
The proposed method | 31.1210 | 0.9055 | 760,328 | 0.125 |
Methods | PSNR | SSIM | Parameters |
---|---|---|---|
Baseline | 29.9731 | 0.8902 | 734,219 |
Use WRB Block | 30.6882 | 0.8997 | 752,005 |
Use PA Block | 30.4737 | 0.8917 | 742,408 |
Use WRB & PA Block | 31.1210 | 0.9055 | 760,328 |
Position | PSNR | SSIM |
---|---|---|
after the first WRB | 30.9437 | 0.9018 |
after the fourth WRB | 31.1210 | 0.9055 |
after the last WRB | 31.0836 | 0.9031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Xu, S.; Zhu, W.; Huang, X.; Lei, Z.; He, K. Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs. Sensors 2023, 23, 7296. https://doi.org/10.3390/s23167296
Zou L, Xu S, Zhu W, Huang X, Lei Z, He K. Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs. Sensors. 2023; 23(16):7296. https://doi.org/10.3390/s23167296
Chicago/Turabian StyleZou, Liang, Shifan Xu, Weiming Zhu, Xiu Huang, Zihui Lei, and Kun He. 2023. "Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs" Sensors 23, no. 16: 7296. https://doi.org/10.3390/s23167296
APA StyleZou, L., Xu, S., Zhu, W., Huang, X., Lei, Z., & He, K. (2023). Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs. Sensors, 23(16), 7296. https://doi.org/10.3390/s23167296