Flexible Data Rate Allocation Using Non-Orthogonal Multiple Access (NOMA) in a Mode Division Multiplexing (MDM) Optical Power Splitter for System-on-Chip Networks
Abstract
:1. Introduction
2. Structure Optimization by GA and SiPh-Based MDM Optical Power Splitter
3. NOMA Algorithm for Flexible Allocation of Data
4. Experiment, Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kachris, C.; Tomkos, I. A Survey on Optical Interconnects for Data Centers. IEEE Commun. Surv. Tutor. 2012, 14, 1021–1036. [Google Scholar] [CrossRef]
- Cheng, Q.; Rumley, S.; Bahadori, M.; Bergman, K. Photonic switching in high performance datacenters. Opt. Express 2018, 26, 16022–16043. [Google Scholar] [CrossRef]
- Cheng, Q.; Bahadori, M.; Glick, M.; Rumley, S.; Bergman, K. Recent advances in optical technologies for data centers: A review. Optica 2018, 5, 1354–1370. [Google Scholar] [CrossRef]
- Ellis, A.D.; Cotter, D.; Ibrahim, S.; Weerasuriya, R.; Chow, C.W.; Leuthold, J.; Freude, W.; Sygletos, S.; Vorreau, P.; Bonk, R.; et al. Optical interconnection of core and metro networks. J. Opt. Netw. 2008, 7, 928–935. [Google Scholar] [CrossRef]
- Timurdogan, E.; Su, Z.; Shiue, R.J.; Byrd, M.J.; Poulton, C.V.; Jabon, K.; DeRose, C.; Moss, B.R.; Hosseini, E.S.; Duzevik, I.; et al. 400G Silicon Photonics Integrated Circuit Transceiver Chipsets for CPO, OBO, and Pluggable Modules. In Proceedings of the OFC, San Diego, CA, USA, 8–12 March 2020; pp. 1–3. [Google Scholar]
- Cao, Z.; Proietti, R.; Yoo, S.J.B. HALL: A hierarchical all-to-all optical interconnect architecture. In Proceedings of the Optical Interconnects Conference, San Diego, CA, USA, 9–11 May 2014; pp. 73–74. [Google Scholar] [CrossRef]
- Proietti, R.; Liu, G.; Xiao, X.; Werner, S.; Fotouhi, P.; Yoo, S.J.B. FlexLION: A Reconfigurable All-to-All Optical Interconnect Fabric with Bandwidth Steering. In Proceedings of the CLEO 2019, San Jose, CA, USA, 5–10 May 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Alferness, R.C. The all-optical networks. In Proceedings of the WCC 2000—ICCT 2000, International Conference on Communication Technology Proceedings (Cat. No.00EX420), Beijing, China, 21–25 August 2000; pp. 14–15. [Google Scholar] [CrossRef]
- Norte, D.; Willner, A. All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks. J. Light Technol. 1996, 14, 1170–1182. [Google Scholar] [CrossRef]
- Lee, K.-C.; Li, V. A wavelength-convertible optical network. J. Light Technol. 1993, 11, 962–970. [Google Scholar] [CrossRef]
- Ciaramella, E. Wavelength Conversion and All-Optical Regeneration: Achievements and Open Issues. J. Light Technol. 2011, 30, 572–582. [Google Scholar] [CrossRef]
- Blumenthal, D.J.; Olsson, B.-E.; Rossi, G.; Dimmick, T.E.; Rau, L.; Mašanović, M.; Lavrova, O.; Doshi, R.; Jerphagnon, O.; Bowers, J.E.; et al. All-optical label swapping networks and technologies. J. Lightw. Technol. 2000, 18, 2058–2075. [Google Scholar] [CrossRef]
- Fan, L.; Gloeckner, S.; Dobblelaere, P.; Patra, S.; Reiley, D.; King, C.; Yeh, T.; Gritters, J.; Gutierrez, S.; Loke, Y.; et al. Digital MEMS switch for planar photonic crossconnects. In Proceedings of the Optical Fiber Communications Conference, Anaheim, CA, USA, 17 March 2003; pp. 93–94. [Google Scholar] [CrossRef]
- Yano, M.; Yamagishi, F.; Tsuda, T. Optical MEMS for photonic switching-compact and stable optical crossconnect switches for simple, fast, and flexible wavelength applications in recent photonic networks. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 383–394. [Google Scholar] [CrossRef]
- Wu, M.C.; Solgaard, O.; Ford, J.E. Optical MEMS for Lightwave Communication. J. Light Technol. 2006, 24, 4433–4454. [Google Scholar] [CrossRef]
- Zhang, Z.; You, Z.; Chu, D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light. Sci. Appl. 2014, 3, e213. [Google Scholar] [CrossRef]
- Robertson, B.; Yang, H.; Redmond, M.M.; Collings, N.; Moore, J.R.; Liu, J.; Jeziorska-Chapman, A.M.; Pivnenko, M.; Lee, S.; Wonfor, A.; et al. Demonstration of Multi-Casting in a 1 × 9 LCOS Wavelength Selective Switch. J. Light Technol. 2013, 32, 402–410. [Google Scholar] [CrossRef]
- Wang, M.; Zong, L.; Mao, L.; Marquez, A.; Ye, Y.; Zhao, H.; Caballero, F.J.V. LCoS SLM Study and Its Application in Wavelength Selective Switch. Photonics 2017, 4, 22. [Google Scholar] [CrossRef]
- Wonfor, A.; Wang, H.; Penty, R.V.; White, I.H. Large Port Count High-Speed Optical Switch Fabric for Use within Datacenters. J. Opt. Commun. Netw. 2011, 3, A32–A39. [Google Scholar] [CrossRef]
- Tanaka, S.; Jeong, S.-H.; Yamazaki, S.; Uetake, A.; Tomabechi, S.; Ekawa, M.; Morito, K. Monolithically Integrated 8:1 SOA Gate Switch with Large Extinction Ratio and Wide Input Power Dynamic Range. IEEE J. Sel. Quantum Electron. 2009, 45, 1155–1162. [Google Scholar] [CrossRef]
- Stabile, R.; Rohit, A.; Williams, K.A. Monolithically Integrated 8 × 8 Space and Wavelength Selective Cross-Connect. J. Light Technol. 2013, 32, 201–207. [Google Scholar] [CrossRef]
- Rohit, A.; Williams, K.A.; Leijtens, X.J.M.; de Vries, T.; Oei, Y.S.; Heck, M.J.R.; Augustin, L.M.; Notzel, R.; Robbins, D.J.; Smit, M.K. Monolithic Multiband Nanosecond Programmable Wavelength Router. IEEE Photon. J. 2010, 2, 29–35. [Google Scholar] [CrossRef]
- Soref, R. The Past, Present, and Future of Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Jalali, B.; Fathpour, S. Silicon Photonics. J. Light Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of Silicon Photonics Technology and Platform Development. J. Light Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Lim, A.E.-J.; Song, J.; Fang, Q.; Li, C.; Tu, X.; Duan, N.; Chen, K.K.; Tern, R.P.-C.; Liow, T.Y. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 405–416. [Google Scholar] [CrossRef]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Van Thourhout, D.; Baets, R.G. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photon. 2021, 3, 024003. [Google Scholar] [CrossRef]
- Tsang, H.K.; Chen, X.; Cheng, Z.; Zhou, W.; Tong, Y. Subwavelength Silicon Photonics. In Silicon Photonics IV; Topics in Applied Physics; Lockwood, D.J., Pavesi, L., Eds.; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2021; pp. 285–321. [Google Scholar] [CrossRef]
- Chen, G.; Du, J.; Sun, L.; Zheng, L.; Xu, K.; Tsang, H.K.; Chen, X.; Reed, G.T.; He, Z. Machine learning adaptive receiver for PAM-4 modulated optical interconnection based on silicon microring modulator. J. Light. Technol. 2018, 36, 4106–4113. [Google Scholar] [CrossRef]
- Guo, X.; Liu, Y.; Du, J.; Song, Q.; Xu, K. Scalable and compact silicon mode multiplexer via tilt waveguide junctions with shallow etched slots. J. Light. Technol. 2022, 40, 4682–4688. [Google Scholar] [CrossRef]
- Peng, C.-W.; Chow, C.-W.; Kuo, P.-C.; Chen, G.-H.; Yeh, C.-H.; Chen, J.; Lai, Y. DP-QPSK Coherent Detection Using 2D Grating Coupled Silicon Based Receiver. IEEE Photon. J. 2020, 13, 7900105. [Google Scholar] [CrossRef]
- Guan, X.; Shi, W.; Liu, J.; Tan, P.; Slevinsky, J.; Rusch, L.A. Silicon Photonics in Optical Access Networks for 5G Communications. IEEE Commun. Mag. 2021, 59, 126–131. [Google Scholar] [CrossRef]
- Kuo, P.-C.; Tong, Y.; Chow, C.-W.; Tsai, J.-F.; Liu, Y.; Chang, Y.-C.; Yeh, C.H.; Tsang, H.K. 4.36 Tbit/s Silicon Chip-to-Chip Transmission via Few-Mode Fiber (FMF) using 2D Sub-wavelength Grating Couplers. In Proceedings of the Optical Fiber Communication Conference (OFC), Washington, DC, USA, 6–11 June 2021. [Google Scholar] [CrossRef]
- Peng, C.W.; Chan, D.W.U.; Tong, Y.; Chow, C.W.; Liu, Y.; Yeh, C.H.; Tsang, H.K. Long short-term memory neural network for mitigating transmission impairments of 160 Gbit/s PAM4 microring modulation. In Proceedings of the Optical Fiber Communication Conference (OFC), Washington, DC, USA, 6–11 June 2021; Dong, P., Kani, J., Xie, C., Casellas, R., Cole, C., Li, M., Eds.; OSA Technical Digest, Paper Tu5D.3. Optica Publishing Group: Washington, DC, USA, 2021. [Google Scholar]
- Shacham, A.; Bergman, K.; Carloni, L.P. Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors. IEEE Trans. Comput. 2008, 57, 1246–1260. [Google Scholar] [CrossRef]
- Liao, L.; Fathololoumi, S.; Nguyen, K.; Mahalingam, H.; Hui, D.; Heck, J.; Frish, H.; Defrees, R.; Malouin, C.; Seddighian, P.; et al. Silicon photonics for next-generation optical connectivity. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 5–9 March 2023; Technical Digest Series, Paper Th3B.1. Optica Publishing Group: Washington, DC, USA, 2023. [Google Scholar]
- Dai, D.; Liang, D.; Cheben, P. Next-generation silicon photonics: Introduction. Photon-Res. 2022, 10, NGSP1–NGSP3. [Google Scholar] [CrossRef]
- Luo, L.-W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069. [Google Scholar] [CrossRef]
- Li, C.-L.; Jiang, X.-H.; Hsu, Y.; Chen, G.-H.; Chow, C.-W.; Dai, D.-X. Ten-channel mode-division-multiplexed silicon photonic integrated circuit with sharp bends. Front. Inf. Technol. Electron. Eng. 2019, 20, 498–506. [Google Scholar] [CrossRef]
- Xu, H.; Dai, D.; Shi, Y. Silicon Integrated Nanophotonic Devices for On-Chip Multi-Mode Interconnects. Appl. Sci. 2020, 10, 6365. [Google Scholar] [CrossRef]
- Stern, B.; Zhu, X.; Chen, C.P.; Tzuang, L.D.; Cardenas, J.; Bergman, K.; Lipson, M. On-chip mode-division multiplexing switch. Optica 2015, 2, 530–535. [Google Scholar] [CrossRef]
- Dai, D.; Wang, J.; Shi, Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a sin-gle-wavelength-carrier light. Opt. Lett. 2013, 38, 1422–1424. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-H.; Chow, C.-W.; Yeh, C.-H.; Peng, C.-W.; Guo, P.-C.; Tsai, J.-F.; Cheng, M.-W.; Tong, Y.; Tsang, H.K. Mode-Division-Multiplexing (MDM) of 9.4-Tbit/s OFDM Signals on Silicon-on-Insulator (SOI) Platform. IEEE Access 2019, 7, 129104–129111. [Google Scholar] [CrossRef]
- Chen, G.-H.; Tsai, J.-F.; Peng, C.-W.; Kuo, P.-C.; Chen, C.-J.; Chow, C.-W.; Yeh, C.-H.; Lai, Y.; Liu, Y. Compact Mode Division MUX/DEMUX Using Enhanced Evanescent-Wave Coupling on Silicon-on-Insulator (SOI) Platform for 11-Tbit/s Broadband Transmission. IEEE Access 2020, 8, 219881–219890. [Google Scholar] [CrossRef]
- Kuo, P.-C.; Chow, C.-W.; Lin, Y.-Z.; Gunawan, W.H.; Hung, T.-Y.; Jian, Y.-H.; Chen, G.-H.; Peng, C.-W.; Liu, Y.; Yeh, C.-H. Design Consideration, Numerical and Experimental Analyses of Mode-Division-Multiplexed (MDM) Silicon Photonics Integrated Circuit with Sharp Bends. Sensors 2023, 23, 2965. [Google Scholar] [CrossRef]
- Hung, T.Y.; Chen, G.H.; Lin, Y.Z.; Chow, C.W.; Jian, Y.H.; Kuo, P.C.; Peng, C.W.; Tsai, J.F.; Liu, Y.; Yeh, C.H. Wideband and channel switchable mode division multiplexing (MDM) optical power splitter supporting 7.682 Tbit/s for on-chip optical interconnects. Sensors 2023, 23, 711. [Google Scholar] [CrossRef]
- Armstrong, J. OFDM for optical communications. J. Lightw. Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- Chow, C.W.; Yeh, C.H.; Wang, C.H.; Wu, C.L.; Chi, S.; Lin, C. Studies of OFDM signal for broadband optical access networks. IEEE J. Sel. Areas Commun. 2010, 28, 800–807. [Google Scholar] [CrossRef]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Gunawan, W.H.; Chow, C.-W.; Liu, Y.; Chang, Y.-H.; Yeh, C.-H. Optical Beam Steerable Visible Light Communication (VLC) System Supporting Multiple Users Using RGB and Orthogonal Frequency Division Multiplexed (OFDM) Non-Orthogonal Multiple Access (NOMA). Sensors 2022, 22, 8707. [Google Scholar] [CrossRef]
- Lu, F.; Xu, M.; Cheng, L.; Wang, J.; Chang, G.-K. Power-Division Non-Orthogonal Multiple Access (NOMA) in Flexible Optical Access with Synchronized Downlink/Asynchronous Uplink. J. Light Technol. 2017, 35, 4145–4152. [Google Scholar] [CrossRef]
- Jian, Y.-H.; Wang, C.-C.; Chow, C.-W.; Gunawan, W.H.; Wei, T.-C.; Liu, Y.; Yeh, C.-H. Optical Beam Steerable Orthogonal Frequency Division Multiplexing (OFDM) Non-Orthogonal Multiple Access (NOMA) Visible Light Communication Using Spatial-Light Modulator Based Reconfigurable Intelligent Surface. IEEE Photon. J. 2023, 15, 1–8. [Google Scholar] [CrossRef]
- Mallawaarachchi, V. Introduction to genetic algorithms—Including example code. Data Sci. 2017, 8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-Z.; Chow, C.-W.; Yu, T.-W.; Jian, Y.-H.; Hung, T.-Y.; Chen, J.-W.; Yeh, C.-H. Flexible Data Rate Allocation Using Non-Orthogonal Multiple Access (NOMA) in a Mode Division Multiplexing (MDM) Optical Power Splitter for System-on-Chip Networks. Sensors 2023, 23, 7259. https://doi.org/10.3390/s23167259
Lin Y-Z, Chow C-W, Yu T-W, Jian Y-H, Hung T-Y, Chen J-W, Yeh C-H. Flexible Data Rate Allocation Using Non-Orthogonal Multiple Access (NOMA) in a Mode Division Multiplexing (MDM) Optical Power Splitter for System-on-Chip Networks. Sensors. 2023; 23(16):7259. https://doi.org/10.3390/s23167259
Chicago/Turabian StyleLin, Yuan-Zeng, Chi-Wai Chow, Tien-Wei Yu, Yin-He Jian, Tun-Yao Hung, Jian-Wen Chen, and Chien-Hung Yeh. 2023. "Flexible Data Rate Allocation Using Non-Orthogonal Multiple Access (NOMA) in a Mode Division Multiplexing (MDM) Optical Power Splitter for System-on-Chip Networks" Sensors 23, no. 16: 7259. https://doi.org/10.3390/s23167259
APA StyleLin, Y.-Z., Chow, C.-W., Yu, T.-W., Jian, Y.-H., Hung, T.-Y., Chen, J.-W., & Yeh, C.-H. (2023). Flexible Data Rate Allocation Using Non-Orthogonal Multiple Access (NOMA) in a Mode Division Multiplexing (MDM) Optical Power Splitter for System-on-Chip Networks. Sensors, 23(16), 7259. https://doi.org/10.3390/s23167259