A Novel Catheter Shape-Sensing Method Based on Deep Learning with a Multi-Core Optical Fiber
Abstract
:1. Introduction
2. Design of the Catheter with Embedded FBG Sensors
3. Multi-Core Fiber Shape Sensing Algorithm
3.1. FBG Sensing Principle
3.2. Design of the PSO-BP Neural Network
4. Experiment Testing and Analysis of Results
4.1. Experimental Setup
4.2. Temperature Calibration and Compensation
4.3. Shape Reconstruction in a Constant Temperature Environment
4.4. Shape Reconstruction in a Variable Temperature Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q. Maintenance of cardiovascular health and prevention and control of cardiovascular diseases. J. Nanjing Med. Univ. (Soc. Sci.) 2022, 22, 426–429. [Google Scholar]
- Liang, F.; Wang, Y. Coronary heart disease and atrial fibrillation: A vicious cycle. Am. J. Physiol.-Heart Circ. Physiol. 2021, 320, H1–H12. [Google Scholar] [CrossRef]
- Sra, J.; Narayan, G.; Krum, D.; Malloy, A.; Cooley, R.; Bhatia, A.; Dhala, A.; Blanck, Z.; Nangia, V.; Akhtar, M. Computed Tomography-Fluoroscopy Image Integration-Guided Catheter Ablation of Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2007, 18, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, Y. Study of Denoising Ultrasound Image in Focused Ultrasound Surgery. Chin. J. Sci. Instrum. 2002, S3, 4–5. [Google Scholar]
- Wu, Z.; Chang, Y.; Xu, Y.; Wang, H.; Yang, X. New research advances in non-Cartesian parallel MRI reconstruction. Chin. J. Sci. Instrum. 2017, 38, 1996–2006. [Google Scholar]
- van Herwaarden, J.A.; Jansen, M.M.; Vonken, E.J.P.; Bloemert-Tuin, T.; Bullens, R.W.; de Borst, G.J.; Hazenberg, C.E. First in Human Clinical Feasibility Study of Endovascular Navigation with Fiber Optic RealShape (FORS) Technology. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 317–325. [Google Scholar] [CrossRef]
- Altabey, W.A.; Wu, Z.; Noori, M.; Fathnejat, H. Structural Health Monitoring of Composite Pipelines Utilizing Fiber Optic Sensors and an AI-Based Algorithm—A Comprehensive Numerical Study. Sensors 2023, 23, 3887. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.; Arumuru, V.; Jha, R. Industrial fluid flow measurement using optical fiber sensors: A review. IEEE Sens. J. 2020, 21, 7130–7144. [Google Scholar] [CrossRef]
- Han, G.; Liu, X.; Lei, X.; Zhang, P.; Zhou, F. Application of optical fiber sensing in aero-engine temperature test. Chin. J. Sci. Instrum. 2023, 43, 145–164. [Google Scholar]
- He, Y.; Zhang, X.; Zhu, L.; Sun, G.; Lou, X.; Dong, M. Optical Fiber Sensor Performance Evaluation in Soft Polyimide Film with Different Thickness Ratios. Sensors 2019, 19, 790. [Google Scholar] [CrossRef]
- Lou, Y.; Yang, T.; Luo, D.; Wu, J.; Dong, Y. A Novel Catheter Distal Contact Force Sensing for Cardiac Ablation Based on Fiber Bragg Grating with Temperature Compensation. Sensors 2023, 23, 2866. [Google Scholar] [CrossRef] [PubMed]
- Borot de Battisti, M.; Denis de Senneville, B.; Maenhout, M.; Lagendijk, J.J.; van Vulpen, M.; Hautvast, G.; Binnekamp, D.; Moerland, M.A. Fiber Bragg gratings-based sensing for real-time needle tracking during MR-guided brachytherapy. Med. Phys. 2016, 43, 5288–5297. [Google Scholar] [CrossRef] [PubMed]
- Denasi, A.; Khan, F.; Boskma, K.J.; Kaya, M.; Hennersperger, C.; Göbl, R.; Tirindelli, M.; Navab, N.; Misra, S. An observer-based fusion method using multicore optical shape sensors and ultrasound images for magnetically-actuated catheters. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 50–57. [Google Scholar]
- Khan, F.; Denasi, A.; Barrera, D.; Madrigal, J.; Sales, S.; Misra, S. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments. IEEE Sens. J. 2019, 19, 5878–5884. [Google Scholar] [CrossRef]
- Jäckle, S.; Eixmann, T.; Schulz-Hildebrandt, H.; Hüttmann, G.; Pätz, T. surgery, Fiber optical shape sensing of flexible instruments for endovascular navigation. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 2137–2145. [Google Scholar] [CrossRef]
- Jäckle, S.; García-Vázquez, V.; von Haxthausen, F.; Eixmann, T.; Sieren, M.M.; Schulz-Hildebrandt, H.; Hüttmann, G.; Ernst, F.; Kleemann, M.; Pätz, T. 3D catheter guidance including shape sensing for endovascular navigation. In Proceedings of the Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, Houston, TX, USA, 15–20 February 2020; pp. 21–29. [Google Scholar]
- Ha, X.T.; Ourak, M.; Al-Ahmad, O.; Wu, D.; Borghesan, G.; Menciassi, A.; Vander Poorten, E. Robust catheter tracking by fusing electromagnetic tracking, fiber bragg grating and sparse fluoroscopic images. IEEE Sens. J. 2021, 21, 23422–23434. [Google Scholar] [CrossRef]
- Li, T.; Song, Z.; Chen, Y.; Song, Y.; Tan, Y. Fiber Bragg grating and artificial intelligence fusion for shape self-sensing puncture needle. Opt. Precis. Eng. 2023, 31, 160–167. [Google Scholar] [CrossRef]
- Sefati, S.; Gao, C.; Iordachita, I.; Taylor, R.H.; Armand, M. Data-driven shape sensing of a surgical continuum manipulator using an uncalibrated fiber Bragg grating sensor. IEEE Sens. J. 2020, 21, 3066–3076. [Google Scholar] [CrossRef]
- Ha, X.T.; Wu, D.; Ourak, M.; Borghesan, G.; Dankelman, J.; Menciassi, A.; Vander Poorten, E. Shape sensing of flexible robots based on deep learning. IEEE Trans. Robot. 2022, 39, 1580–1593. [Google Scholar] [CrossRef]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Hill, K.O.; Meltz, G. Fiber Bragg grating technology fundamentals and overview. J. Light. Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef]
- Hibbeler, R. Mechanics of Materials; Prentice-Hall: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Yang, A.; Tang, Q.; Yang, X.; Li, M.; Liu, Y.; Lin, M.; Zhang, P. Optimization of engine assembly process parameters based on neural network and PSO algorithm. Mod. Maunfacturing Eng. 2022, 497, 105. [Google Scholar]
- He, Y.; Liu, X.; Cai, Y.; Li, Y.; Zhu, Y. New aircraft terrain matching algorithm based on particle swarm optimization. Infrared Laser Eng. 2016, 45, 122–127. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Tetko, I.V.; Livingstone, D.J.; Luik, A.I.J.J. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf. 1995, 35, 826–833. [Google Scholar] [CrossRef]
- Ren, C.; An, N.; Wang, J.; Li, L.; Hu, B.; Shang, D. Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowl.-Based Syst. 2014, 56, 226–239. [Google Scholar] [CrossRef]
- Zhang, J.-R.; Zhang, J.; Lok, T.-M.; Lyu, M. computation. A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 2007, 185, 1026–1037. [Google Scholar]
- Katz, J.D. Control of the environment in the operating room. Anesth. Analg. 2017, 125, 1214–1218. [Google Scholar] [CrossRef]
Number of Hidden Layers | Hidden Size | Average Error/mm−1 | Standard Deviation/mm−1 | Training Time/s |
---|---|---|---|---|
1 | 3 | 0.4667 | 0.3966 | 4.29 |
1 | 6 | 0.4160 | 0.3386 | 4.31 |
1 | 9 | 0.4243 | 0.3132 | 4.60 |
1 | 10 | 0.4125 | 0.3357 | 4.79 |
1 | 20 | 0.4384 | 0.3545 | 5.18 |
1 | 50 | 0.4510 | 0.3722 | 6.30 |
1 | 80 | 0.4349 | 0.3603 | 8.91 |
1 | 100 | 1.6262 | 1.0784 | 9.75 |
2 | 3 | 0.6533 | 0.5031 | 4.55 |
2 | 6 | 0.4369 | 0.3557 | 4.99 |
2 | 9 | 0.4286 | 0.3602 | 5.67 |
2 | 20 | 0.7035 | 0.5444 | 8.58 |
2 | 50 | 2.5701 | 2.4314 | 12.60 |
2 | 100 | 2.6782 | 2.4266 | 22.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, F.; He, Y.; Zhu, H.; Zhou, K. A Novel Catheter Shape-Sensing Method Based on Deep Learning with a Multi-Core Optical Fiber. Sensors 2023, 23, 7243. https://doi.org/10.3390/s23167243
Han F, He Y, Zhu H, Zhou K. A Novel Catheter Shape-Sensing Method Based on Deep Learning with a Multi-Core Optical Fiber. Sensors. 2023; 23(16):7243. https://doi.org/10.3390/s23167243
Chicago/Turabian StyleHan, Fei, Yanlin He, Hangwei Zhu, and Kangpeng Zhou. 2023. "A Novel Catheter Shape-Sensing Method Based on Deep Learning with a Multi-Core Optical Fiber" Sensors 23, no. 16: 7243. https://doi.org/10.3390/s23167243
APA StyleHan, F., He, Y., Zhu, H., & Zhou, K. (2023). A Novel Catheter Shape-Sensing Method Based on Deep Learning with a Multi-Core Optical Fiber. Sensors, 23(16), 7243. https://doi.org/10.3390/s23167243