Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measures
2.3. Procedure
2.4. Accelerometry
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Linear Mixed-Effects Modelling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]
- Hannam, K.; Deere, K.; Hartley, A.; Clark, E.; Coulson, J.; Ireland, A.; Moss, C.; Edwards, M.; Dennison, E.; Gaysin, T. A novel accelerometer-based method to describe day-to-day exposure to potentially osteogenic vertical impacts in older adults: Findings from a multi-cohort study. Osteoporos. Int. 2017, 28, 1001–1011. [Google Scholar] [CrossRef]
- Arvidsson, D.; Fridolfsson, J.; Börjesson, M. Measurement of physical activity in clinical practice using accelerometers. J. Intern. Med. 2019, 286, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; Van Hees, V.T.; Trenell, M.I.; Owen, C.G. Large scale population assessment of physical activity using wrist worn accelerometers: The UK biobank study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef] [PubMed]
- Steene-Johannessen, J.; Hansen, B.H.; Dalene, K.E.; Kolle, E.; Northstone, K.; Møller, N.C.; Grøntved, A.; Wedderkopp, N.; Kriemler, S.; Page, A.S. Variations in accelerometry measured physical activity and sedentary time across Europe–harmonized analyses of 47,497 children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 38. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G. Population-level physical activity surveillance in young people: Are accelerometer-based measures ready for prime time? Int. J. Behav. Nutr. Phys. Act. 2020, 17, 28. [Google Scholar] [CrossRef]
- Neugebauer, J.M.; Hawkins, D.A.; Beckett, L. Estimating Youth Locomotion Ground Reaction Forces Using an Accelerometer-Based Activity Monitor. PLoS ONE 2012, 7, e48182. [Google Scholar] [CrossRef]
- Garcia, A.W.; Langenthal, C.R.; Angulo-Barroso, R.M.; Gross, M.M. A comparison of accelerometers for predicting energy expenditure and vertical ground reaction force in school-age children. Meas. Phys. Educ. Exerc. Sci. 2004, 8, 119–144. [Google Scholar] [CrossRef]
- Janz, K.F.; Rao, S.; Baumann, H.J.; Schultz, J.L. Measuring children’s vertical ground reaction forces with accelerometry during walking, running, and jumping: The Iowa Bone Development Study. Pediatr. Exerc. Sci. 2003, 15, 34–43. [Google Scholar] [CrossRef]
- Aadland, E.; Andersen, L.B.; Anderssen, S.A.; Resaland, G.K.; Kvalheim, O.M. Accelerometer epoch setting is decisive for associations between physical activity and metabolic health in children. J. Sports Sci. 2020, 38, 256–263. [Google Scholar] [CrossRef]
- Bauer, J.J.; Fuchs, R.K.; Smith, G.A.; Snow, C.M. Quantifying force magnitude and loading rate from drop landings that induce osteogenesis. J. Appl. Biomech. 2001, 17, 142–152. [Google Scholar] [CrossRef]
- Johannsen, N.; Binkley, T.; Englert, V.; Neiderauer, G.; Specker, B. Bone response to jumping is site-specific in children: A randomized trial. Bone 2003, 33, 533–539. [Google Scholar] [CrossRef] [PubMed]
- McKay, H.; Tsang, G.; Heinonen, A.; MacKelvie, K.; Sanderson, D.; Khan, K.M. Ground reaction forces associated with an effective elementary school based jumping intervention. Br. J. Sports Med. 2005, 39, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Pouliot-Laforte, A.; Veilleux, L.N.; Rauch, F.; Lemay, M. Validity of an accelerometer as a vertical ground reaction force measuring device in healthy children and adolescents and in children and adolescents with osteogenesis imperfecta type I. J. Musculoskelet. Neuronal Interact. 2014, 14, 155–161. [Google Scholar]
- Rowlands, A.; Stiles, V. Accelerometer counts and raw acceleration output in relation to mechanical loading. J. Biomech. 2012, 45, 448–454. [Google Scholar] [CrossRef]
- Stiles, V.H.; Griew, P.J.; Rowlands, A.V. Use of Accelerometry to Classify Activity Beneficial to Bone in Premenopausal Women. Med. Sci. Sports Exerc. 2013, 45, 2353–2361. [Google Scholar] [CrossRef]
- Neugebauer, J.M.; Lafiandra, M. Predicting Ground Reaction Force from a Hip-Borne Accelerometer during Load Carriage. Med. Sci. Sports Exerc. 2018, 50, 2369–2374. [Google Scholar] [CrossRef]
- Veras, L.; Diniz-Sousa, F.; Boppre, G.; Devezas, V.; Santos-Sousa, H.; Preto, J.; Vilas-Boas, J.; Machado, L.; Oliveira, J.; Fonseca, H. Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects. Osteoporos. Int. 2020, 31, 1239–1250. [Google Scholar] [CrossRef]
- Meyer, U.; Ernst, D.; Schott, S.; Riera, C.; Hattendorf, J.; Romkes, J.; Granacher, U.; Gopfert, B.; Kriemler, S. Validation of two accelerometers to determine mechanical loading of physical activities in children. J. Sports Sci. 2015, 33, 1702–1709. [Google Scholar] [CrossRef]
- Scott, J.J.; Rowlands, A.V.; Cliff, D.P.; Morgan, P.J.; Plotnikoff, R.C.; Lubans, D.R. Comparability and feasibility of wrist-and hip-worn accelerometers in free-living adolescents. J. Sci. Med. Sport 2017, 20, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, M.H.; Migueles, J.H.; Cadenas-Sanchez, C.; Henriksson, P.; Mora-Gonzalez, J.; Henriksson, H.; Labayen, I.; Löf, M.; Esteban-Cornejo, I.; Ortega, F.B. Hip and wrist accelerometers showed consistent associations with fitness and fatness in children aged 8–12 years. Acta Paediatr. 2020, 109, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Clifford, S.A.; Davies, S.; Wake, M.; Azzopardi, P.S.; Baur, L.A.; Burgner, D.P.; Carlin, J.B.; Cheung, M.; Dwyer, T.; Edwards, B.; et al. Child Health CheckPoint: Cohort summary and methodology of a physical health and biospecimen module for the Longitudinal Study of Australian Children. BMJ Open 2019, 9, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Hallal, P.C.; Bertoldi, A.D.; Domingues, M.R.; da Silveira, M.F.; Demarco, F.F.; da Silva, I.C.M.; Barros, F.C.; Victora, C.G.; Bassani, D.G. Cohort Profile: The 2015 Pelotas (Brazil) Birth Cohort Study. Int. J. Epidemiol. 2017, 47, 1048–1048h. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Noonan, R.; Rowlands, A.V.; Van Hees, V.; Knowles, Z.; Boddy, L.M. Wear Compliance and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers. Med. Sci. Sports Exerc. 2016, 48, 245–253. [Google Scholar] [CrossRef]
- McLellan, G.; Arthur, R.; Buchan, D.S. Wear compliance, sedentary behaviour and activity in free-living children from hip- and wrist-mounted ActiGraph GT3X+ accelerometers. J. Sports Sci. 2018, 36, 2424–2430. [Google Scholar] [CrossRef]
- Freedson, P.; Pober, D.; Janz, K.F. Calibration of accelerometer output for children. Med. Sci. Sports Exerc. 2005, 37, S523–S530. [Google Scholar] [CrossRef]
- Pedley, J.; Lloyd, R.S.; Read, P.; Moore, I.; Myer, G.; Oliver, J. A novel method to categorise stretch-shortening cycle performance across maturity in youth soccer players. J. Strength Cond. Res. 2020, 36, 2573–2580. [Google Scholar] [CrossRef]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Maturation leads to gender differences in landing force and vertical jump performance—A longitudinal study. Am. J. Sports Med. 2006, 34, 806–813. [Google Scholar] [CrossRef]
- Swartz, E.E.; Decoster, L.C.; Russell, P.J.; Croce, R.V. Effects of developmental stage and sex on lower extremity kinematics and vertical ground reaction forces during landing. J. Athl. Train. 2005, 40, 9–14. [Google Scholar]
- Trost, S.G. State of the art reviews: Measurement of physical activity in children and adolescents. Am. J. Lifestyle Med. 2007, 1, 299–314. [Google Scholar] [CrossRef]
- Ross, W.; Marfell-Jones, M.; MacDougall, J.; Wenger, H.; Green, H. Physiological Testing of the High Performance Athlete; Kinanthropometry; Human Kinetics Books: Champaign, IL, USA, 1991; pp. 223–308. [Google Scholar]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 2017, 17, 114–139. [Google Scholar] [PubMed]
- Turner, C.H.; Robling, A.G. Designing exercise regimens to increase bone strength. Exerc. Sport Sci. Rev. 2003, 31, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.H.; Owan, I.; Takano, Y. Mechanotransduction in bone: Role of strain rate. Am. J. Physiol.-Endocrinol. Metab. 1995, 269, E438–E442. [Google Scholar] [CrossRef] [PubMed]
- van Hees, V.T.; Gorzelniak, L.; Leon, E.C.D.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renstrom, F.; Franks, P.W.; Horsch, A.; et al. Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef]
- Pedley, J.S.; DiCesare, C.A.; Lloyd, R.S.; Oliver, J.L.; Ford, K.R.; Hewett, T.E.; Myer, G.D. Maturity alters drop vertical jump landing force-time profiles but not performance outcomes in adolescent females. Scand. J. Med. Sci. Sports 2021, 31, 2055–2063. [Google Scholar] [CrossRef]
- Meyns, P.; Van de Walle, P.; Desloovere, K.; Janssens, S.; Van Sever, S.; Hallemans, A. Age-related differences in interlimb coordination during typical gait: An observational study. Gait Posture 2020, 81, 109–115. [Google Scholar] [CrossRef]
- Van de Walle, P.; Meyns, P.; Desloovere, K.; De Rijck, J.; Kenis, J.; Verbecque, E.; Van Criekinge, T.; Hallemans, A. Age-related changes in arm motion during typical gait. Gait Posture 2018, 66, 51–57. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Rennie, K.; Kozarski, R.; Stanley, R.M.; Eston, R.G.; Parfitt, G.C.; Olds, T.S. Children’s Physical Activity Assessed with Wrist- and Hip-Worn Accelerometers. Med. Sci. Sports Exerc. 2014, 46, 2308–2316. [Google Scholar] [CrossRef]
- Noonan, R.J.; Boddy, L.M.; Kim, Y.; Knowles, Z.R.; Fairclough, S.J. Comparison of children’s free-living physical activity derived from wrist and hip raw accelerations during the segmented week. J. Sports Sci. 2017, 35, 2067–2072. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Cal Abad, C.C.; Fernandes, V.; Ramirez-Campillo, R.; Suchomel, T. Portable force plates: A viable and practical alternative to rapidly and accurately monitor elite sprint performance. Sports 2018, 6, 61. [Google Scholar] [CrossRef]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent validity of a portable force plate using vertical jump force–time characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Peterson Silveira, R.; Stergiou, P.; Carpes, F.P.; Castro, F.A.d.S.; Katz, L.; Stefanyshyn, D.J. Validity of a portable force platform for assessing biomechanical parameters in three different tasks. Sports Biomech. 2017, 16, 177–186. [Google Scholar] [CrossRef]
- Walsh, M.S.; Ford, K.R.; Bangen, K.J.; Myer, G.D.; Hewett, T.E. The validation of a portable force plate for measuring force-time data during jumping and landing tasks. J. Strength Cond. Res. 2006, 20, 730. [Google Scholar] [PubMed]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Koziel, S.M. Validation of maturity offset in a longitudinal sample of Polish boys. J. Sports Sci. 2014, 32, 424–437. [Google Scholar] [CrossRef]
All | Male | Female | |
---|---|---|---|
(n = 269) | (n = 127) | (n = 142) | |
Age | 12.3 (2.0) | 12.3 (2.1) | 12.3 (1.9) |
Height (m) | 1.54 (0.14) | 1.55 (0.15) | 1.54 (0.12) |
Leg Length (m) | 0.74 (0.07) | 0.75 (0.08) | 0.73 (0.07) |
Mass (kg) | 46.01 (13.50) | 45.15 (13.75) | 46.79 (13.27) |
BMI (kg/m2) | 18.97 (3.12) | 18.43 (2.87) | 19.45 (3.27) * |
Predicted APHV | 12.77 (1.02) | 13.60 (0.69) | 12.02 (0.60) * |
Maturity offset (years) | −0.44 (1.93) | −1.28 (1.86) | 0.31 (1.68) * |
Pre/Post-PHV (%) | 53/47 | 68/32 | 40/60 |
GENEActiv (Wrist) | Actigraph (Wrist) | Actigraph (Hip) | |||||||
---|---|---|---|---|---|---|---|---|---|
Unstd Beta Coeff (95% CI) | t | p | Unstd Beta Coeff (95% CI) | t | p | Unstd Beta Coeff (95% CI) | t | p | |
Intercept | −2.12 (−2.29, −2.10) | −45.61 | <0.001 | −2.25 (−2.35, −2.14) | −40.72 | <0.001 | −2.98 (3.17, −2.80) | 31.67 | <0.001 |
Acceleration (g) | 1.21 (1.12, 1.29) | 28.39 | <0.001 | 1.30 (1.19, 1.42) | 22.53 | <0.001 | 2.22 (1.97, 2.46) | 17.69 | <0.001 |
Acceleration squared (g) | −0.17 (−0.19, −0.15) | −15.34 | <0.001 | −0.21 (−0.25, −0.18) | −12.25 | <0.001 | −0.52 (−0.061, −0.42) | −10.56 | <0.001 |
Acceleration cubed (g) | 0.01 (0.01, 0.01) | 10.87 | <0.001 | 0.01 (0.01, 0.02) | 9.18 | <0.001 | 0.05 (0.04, 0.06) | 8.25 | <0.001 |
Maturity status (prePHV = 0, postPHV = 1) | −0.14 (−0.2, −0.07) | −4.24 | <0.001 | −0.13 (−0.19, −0.07) | −4.03 | <0.001 | 0.07 (0.00, 0.14) | 1.97 | 0.049 |
Body mass c (kg) | −0.003 (−0.01, 0.00) | −2.04 | 0.041 | −0.002 (−0.01, 0.001) | −1.21 | 0.229 | 0.003 (0.00, 0.01) | 1.74 | 0.082 |
Body mass c × Acceleration interaction | 0.0005 (−0.001, 0.0004) | −1.01 | 0.312 | −0.001 (−0.002, −0.0001) | −2.13 | 0.033 | −0.002 (−0.003, 0.0005) | −2.71 | 0.007 |
Goodness of fit | Pseudo R2 (%) AIC | 81.1 887.1 | 81.9 839.7 | 79.9 896.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brailey, G.; Metcalf, B.; Price, L.; Cumming, S.; Stiles, V. Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents. Sensors 2023, 23, 6943. https://doi.org/10.3390/s23156943
Brailey G, Metcalf B, Price L, Cumming S, Stiles V. Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents. Sensors. 2023; 23(15):6943. https://doi.org/10.3390/s23156943
Chicago/Turabian StyleBrailey, Gemma, Brad Metcalf, Lisa Price, Sean Cumming, and Victoria Stiles. 2023. "Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents" Sensors 23, no. 15: 6943. https://doi.org/10.3390/s23156943
APA StyleBrailey, G., Metcalf, B., Price, L., Cumming, S., & Stiles, V. (2023). Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents. Sensors, 23(15), 6943. https://doi.org/10.3390/s23156943